These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31991308)

  • 1. A causal discovery algorithm based on the prior selection of leaf nodes.
    Zeng Y; Hao Z; Cai R; Xie F; Ou L; Huang R
    Neural Netw; 2020 Apr; 124():130-145. PubMed ID: 31991308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Causality in linear nongaussian acyclic models in the presence of latent gaussian confounders.
    Chen Z; Chan L
    Neural Comput; 2013 Jun; 25(6):1605-41. PubMed ID: 23517099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Causal Discovery in Linear Non-Gaussian Acyclic Model With Multiple Latent Confounders.
    Chen W; Cai R; Zhang K; Hao Z
    IEEE Trans Neural Netw Learn Syst; 2022 Jul; 33(7):2816-2827. PubMed ID: 33417571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Efficient Entropy-Based Causal Discovery Method for Linear Structural Equation Models With IID Noise Variables.
    Xie F; Cai R; Zeng Y; Gao J; Hao Z
    IEEE Trans Neural Netw Learn Syst; 2020 May; 31(5):1667-1680. PubMed ID: 31283513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multivariate additive noise model for complete causal discovery.
    Parida PK; Marwala T; Chakraverty S
    Neural Netw; 2018 Jul; 103():44-54. PubMed ID: 29626732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pooling-LiNGAM algorithm for effective connectivity analysis of fMRI data.
    Xu L; Fan T; Wu X; Chen K; Guo X; Zhang J; Yao L
    Front Comput Neurosci; 2014; 8():125. PubMed ID: 25339895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of quantum computing to a linear non-Gaussian acyclic model for novel medical knowledge discovery.
    Kawaguchi H
    PLoS One; 2023; 18(4):e0283933. PubMed ID: 37018292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SLIVER: Unveiling large scale gene regulatory networks of single-cell transcriptomic data through causal structure learning and modules aggregation.
    Jiang H; Wang Y; Yin C; Pan H; Chen L; Feng K; Chang Y; Sun H
    Comput Biol Med; 2024 Jun; 178():108690. PubMed ID: 38879931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fuzzy jump wavelet neural network based on rule induction for dynamic nonlinear system identification with real data applications.
    Kharazihai Isfahani M; Zekri M; Marateb HR; MaƱanas MA
    PLoS One; 2019; 14(12):e0224075. PubMed ID: 31816627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Gaussian Methods for Causal Structure Learning.
    Shimizu S
    Prev Sci; 2019 Apr; 20(3):431-441. PubMed ID: 29789997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting and quantifying causal associations in large nonlinear time series datasets.
    Runge J; Nowack P; Kretschmer M; Flaxman S; Sejdinovic D
    Sci Adv; 2019 Nov; 5(11):eaau4996. PubMed ID: 31807692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Reduced PC-Algorithm: Improved Causal Structure Learning in Large Random Networks.
    Sondhi A; Shojaie A
    J Mach Learn Res; 2019; 20(164):. PubMed ID: 37799538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-gKnock: Nonlinear group-feature selection with deep neural networks.
    Zhu G; Zhao T
    Neural Netw; 2021 Mar; 135():139-147. PubMed ID: 33385830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Causal relations of health indices inferred statistically using the DirectLiNGAM algorithm from big data of Osaka prefecture health checkups.
    Kotoku J; Oyama A; Kitazumi K; Toki H; Haga A; Yamamoto R; Shinzawa M; Yamakawa M; Fukui S; Yamamoto K; Moriyama T
    PLoS One; 2020; 15(12):e0243229. PubMed ID: 33362207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Causal Discovery Combining K2 with Brain Storm Optimization Algorithm.
    Hong Y; Hao Z; Mai G; Huang H; Kumar Sangaiah A
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30012940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning debiased graph representations from the OMOP common data model for synthetic data generation.
    Schulz NA; Carus J; Wiederhold AJ; Johanns O; Peters F; Rath N; Rausch K; Holleczek B; Katalinic A; ; Gundler C
    BMC Med Res Methodol; 2024 Jun; 24(1):136. PubMed ID: 38909216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Fast PC Algorithm for High Dimensional Causal Discovery with Multi-Core PCs.
    Le TD; Hoang T; Li J; Liu L; Liu H; Hu S
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1483-1495. PubMed ID: 27429444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Causal discoveries for high dimensional mixed data.
    Cai Z; Xi D; Zhu X; Li R
    Stat Med; 2022 Oct; 41(24):4924-4940. PubMed ID: 35968913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Causal Structural Learning via Local Graphs.
    Chen W; Drton M; Shojaie A
    SIAM J Math Data Sci; 2023; 5(2):280-305. PubMed ID: 39026587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating causal effects with a non-paranormal method for the design of efficient intervention experiments.
    Teramoto R; Saito C; Funahashi S
    BMC Bioinformatics; 2014 Jun; 15():228. PubMed ID: 24980787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.