These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 31991354)
1. Evaluation of the effects of low concentrations of bisphenol AF on gonadal development using the Xenopus laevis model: A finding of testicular differentiation inhibition coupled with feminization. Cai M; Li YY; Zhu M; Li JB; Qin ZF Environ Pollut; 2020 May; 260():113980. PubMed ID: 31991354 [TBL] [Abstract][Full Text] [Related]
2. Bisphenol B disrupts testis differentiation partly via the estrogen receptor-mediated pathway and subsequently causes testicular dysgenesis in Xenopus laevis. Li HM; Li YY; Zhang YC; Li JB; Xu HM; Xiong YM; Qin ZF Ecotoxicol Environ Saf; 2022 May; 236():113453. PubMed ID: 35390692 [TBL] [Abstract][Full Text] [Related]
3. Bisphenol A induces feminization in Xenopus laevis tadpoles. Levy G; Lutz I; Krüger A; Kloas W Environ Res; 2004 Jan; 94(1):102-11. PubMed ID: 14643292 [TBL] [Abstract][Full Text] [Related]
4. 2,2',4,4'-tetrabromodipheny ether (BDE-47) disrupts gonadal development of the Africa clawed frog (Xenopus laevis). Li JB; Li YY; Shen YP; Zhu M; Li XH; Qin ZF Aquat Toxicol; 2020 Apr; 221():105441. PubMed ID: 32045789 [TBL] [Abstract][Full Text] [Related]
5. Determining the optimal developmental stages of Xenopus laevis for initiating exposures to chemicals for sensitively detecting their feminizing effects on gonadal differentiation. Li YY; Chen J; Qin ZF Aquat Toxicol; 2016 Oct; 179():134-42. PubMed ID: 27611864 [TBL] [Abstract][Full Text] [Related]
6. Transcriptomic analysis identifies early cellular and molecular events by which estrogen disrupts testis differentiation and causes feminization in Xenopus laevis. Li Y; Shen Y; Li J; Cai M; Qin Z Aquat Toxicol; 2020 Sep; 226():105557. PubMed ID: 32645606 [TBL] [Abstract][Full Text] [Related]
7. Bisphenol AF and Bisphenol F Induce Similar Feminizing Effects in Chicken Embryo Testis as Bisphenol A. Mentor A; Wänn M; Brunström B; Jönsson M; Mattsson A Toxicol Sci; 2020 Dec; 178(2):239-250. PubMed ID: 33010167 [TBL] [Abstract][Full Text] [Related]
8. Exposure to Bisphenol AF disrupts sex hormone levels and vitellogenin expression in zebrafish. Yang X; Liu Y; Li J; Chen M; Peng D; Liang Y; Song M; Zhang J; Jiang G Environ Toxicol; 2016 Mar; 31(3):285-94. PubMed ID: 25213402 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional changes caused by estrogenic endocrine disrupting chemicals in gonad-mesonephros complexes of genetic male Xenopus laevis: Multiple biomarkers for early detection of testis differentiation disruption. Shen Y; Li Y; Zhu M; Li J; Qin Z Sci Total Environ; 2020 Jul; 726():138522. PubMed ID: 32335401 [TBL] [Abstract][Full Text] [Related]
10. Bisphenol A, Bisphenol AF, di-n-butyl phthalate, and 17β-estradiol have shared and unique dose-dependent effects on early embryo cleavage divisions and development in Xenopus laevis. Arancio AL; Cole KD; Dominguez AR; Cohenour ER; Kadie J; Maloney WC; Cilliers C; Schuh SM Reprod Toxicol; 2019 Mar; 84():65-74. PubMed ID: 30579998 [TBL] [Abstract][Full Text] [Related]
11. Effects of larval exposure to estradiol on spermatogenesis and in vitro gonadal steroid secretion in African clawed frogs, Xenopus laevis. Hu F; Smith EE; Carr JA Gen Comp Endocrinol; 2008 Jan; 155(1):190-200. PubMed ID: 17544424 [TBL] [Abstract][Full Text] [Related]
12. Assessing chronic toxicity of bisphenol A to larvae of the African clawed frog (Xenopus laevis) in a flow-through exposure system. Pickford DB; Hetheridge MJ; Caunter JE; Hall AT; Hutchinson TH Chemosphere; 2003 Oct; 53(3):223-35. PubMed ID: 12919782 [TBL] [Abstract][Full Text] [Related]
13. All ZZ male Xenopus laevis provides a clear sex-reversal test for feminizing endocrine disruptors. Oka T; Mitsui N; Hinago M; Miyahara M; Fujii T; Tooi O; Santo N; Urushitani H; Iguchi T; Hanaoka Y; Mikamid H Ecotoxicol Environ Saf; 2006 Feb; 63(2):236-43. PubMed ID: 16139364 [TBL] [Abstract][Full Text] [Related]
14. Gestational and lactational exposure to bisphenol AF in maternal rats increases testosterone levels in 23-day-old male offspring. Li J; Sheng N; Cui R; Feng Y; Shao B; Guo X; Zhang H; Dai J Chemosphere; 2016 Nov; 163():552-561. PubMed ID: 27567155 [TBL] [Abstract][Full Text] [Related]
15. Effects of low-dose bisphenol AF on mammal testis development via complex mechanisms: alterations are detectable in both infancy and adulthood. Li Y; Xiong Y; Lv L; Li X; Qin Z Arch Toxicol; 2022 Dec; 96(12):3373-3383. PubMed ID: 36098747 [TBL] [Abstract][Full Text] [Related]
16. Long-term effects of bisphenol AF (BPAF) on hormonal balance and genes of hypothalamus-pituitary-gonad axis and liver of zebrafish (Danio rerio), and the impact on offspring. Shi J; Jiao Z; Zheng S; Li M; Zhang J; Feng Y; Yin J; Shao B Chemosphere; 2015 Jun; 128():252-7. PubMed ID: 25723718 [TBL] [Abstract][Full Text] [Related]
17. Effects of Chinese domestic polychlorinated biphenyls (PCBs) on gonadal differentiation in Xenopus laevis. Qin ZF; Zhou JM; Chu SG; Xu XB Environ Health Perspect; 2003 Apr; 111(4):553-6. PubMed ID: 12676614 [TBL] [Abstract][Full Text] [Related]
18. BPA and BPA alternatives BPS, BPAF, and TMBPF, induce cytotoxicity and apoptosis in rat and human stem cells. Harnett KG; Chin A; Schuh SM Ecotoxicol Environ Saf; 2021 Jun; 216():112210. PubMed ID: 33866271 [TBL] [Abstract][Full Text] [Related]
19. Individual and combined effects of BPA, BPS and BPAF on the cardiomyocyte differentiation of embryonic stem cells. Zhou R; Xia M; Zhang L; Cheng W; Yan J; Sun Y; Wang Y; Jiang H Ecotoxicol Environ Saf; 2021 Sep; 220():112366. PubMed ID: 34058679 [TBL] [Abstract][Full Text] [Related]
20. Prenatal exposure to bisphenol AF induced male offspring reproductive dysfunction by triggering testicular innate and adaptive immune responses. Xue S; Liu L; Dong M; Xue W; Zhou S; Li X; Guo S; Yan W Ecotoxicol Environ Saf; 2023 Jul; 259():115030. PubMed ID: 37216864 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]