These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 31991636)
1. REAL-Time Smartphone Activity Classification Using Inertial Sensors-Recognition of Scrolling, Typing, and Watching Videos While Sitting or Walking. Zhuo S; Sherlock L; Dobbie G; Koh YS; Russello G; Lottridge D Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991636 [TBL] [Abstract][Full Text] [Related]
2. INIM: Inertial Images Construction with Applications to Activity Recognition. Daniel N; Klein I Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300524 [TBL] [Abstract][Full Text] [Related]
3. HIT HAR: Human Image Threshing Machine for Human Activity Recognition Using Deep Learning Models. Poulose A; Kim JH; Han DS Comput Intell Neurosci; 2022; 2022():1808990. PubMed ID: 36248917 [TBL] [Abstract][Full Text] [Related]
4. Classification of Human Daily Activities Using Ensemble Methods Based on Smartphone Inertial Sensors. Ku Abd Rahim KN; Elamvazuthi I; Izhar LI; Capi G Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486242 [TBL] [Abstract][Full Text] [Related]
5. Smartphone IMU Sensors for Human Identification through Hip Joint Angle Analysis. Andersson R; Bermejo-García J; Agujetas R; Cronhjort M; Chilo J Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123816 [TBL] [Abstract][Full Text] [Related]
6. Human Physical Activity Recognition Using Smartphone Sensors. Voicu RA; Dobre C; Bajenaru L; Ciobanu RI Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678039 [TBL] [Abstract][Full Text] [Related]
7. A comparison of activity classification in younger and older cohorts using a smartphone. Del Rosario MB; Wang K; Wang J; Liu Y; Brodie M; Delbaere K; Lovell NH; Lord SR; Redmond SJ Physiol Meas; 2014 Nov; 35(11):2269-86. PubMed ID: 25340659 [TBL] [Abstract][Full Text] [Related]
8. Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking. Hu B; Dixon PC; Jacobs JV; Dennerlein JT; Schiffman JM J Biomech; 2018 Apr; 71():37-42. PubMed ID: 29452755 [TBL] [Abstract][Full Text] [Related]
9. Suitability of Smartphone Inertial Sensors for Real-Time Biofeedback Applications. Kos A; Tomažič S; Umek A Sensors (Basel); 2016 Feb; 16(3):301. PubMed ID: 26927125 [TBL] [Abstract][Full Text] [Related]
10. Atrial Fibrillation Detection via Accelerometer and Gyroscope of a Smartphone. Lahdenoja O; Hurnanen T; Iftikhar Z; Nieminen S; Knuutila T; Saraste A; Kiviniemi T; Vasankari T; Airaksinen J; Pankaala M; Koivisto T IEEE J Biomed Health Inform; 2018 Jan; 22(1):108-118. PubMed ID: 28391210 [TBL] [Abstract][Full Text] [Related]
11. Human Activity Recognition Using Inertial Sensors in a Smartphone: An Overview. Sousa Lima W; Souto E; El-Khatib K; Jalali R; Gama J Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330919 [TBL] [Abstract][Full Text] [Related]
12. Methods for Real-Time Prediction of the Mode of Travel Using Smartphone-Based GPS and Accelerometer Data. Martin BD; Addona V; Wolfson J; Adomavicius G; Fan Y Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28885550 [TBL] [Abstract][Full Text] [Related]
13. Hierarchical classification scheme for real-time recognition of physical activities and postural transitions using smartphone inertial sensors. Walid Talha SA; Fleury A; Lecoeuche S Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1243-1246. PubMed ID: 31946117 [TBL] [Abstract][Full Text] [Related]
14. Walking Recognition in Mobile Devices. Casado FE; Rodríguez G; Iglesias R; Regueiro CV; Barro S; Canedo-Rodríguez A Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098082 [TBL] [Abstract][Full Text] [Related]
15. Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model. Ahmed N; Rafiq JI; Islam MR Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935943 [TBL] [Abstract][Full Text] [Related]
16. Research on Construction Workers' Activity Recognition Based on Smartphone. Zhang M; Chen S; Zhao X; Yang Z Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30110892 [TBL] [Abstract][Full Text] [Related]
17. IMU Sensor-Based Hand Gesture Recognition for Human-Machine Interfaces. Kim M; Cho J; Lee S; Jung Y Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31487894 [TBL] [Abstract][Full Text] [Related]
18. Improved Activity Recognition Combining Inertial Motion Sensors and Electroencephalogram Signals. Graña M; Aguilar-Moreno M; De Lope Asiain J; Araquistain IB; Garmendia X Int J Neural Syst; 2020 Oct; 30(10):2050053. PubMed ID: 32917105 [TBL] [Abstract][Full Text] [Related]
19. Human Activity Recognition for Indoor Localization Using Smartphone Inertial Sensors. Moreira D; Barandas M; Rocha T; Alves P; Santos R; Leonardo R; Vieira P; Gamboa H Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577526 [TBL] [Abstract][Full Text] [Related]
20. Smartphone Location Recognition: A Deep Learning-Based Approach. Klein I Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31905990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]