These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31991636)

  • 21. Learning the Orientation of a Loosely-Fixed Wearable IMU Relative to the Body Improves the Recognition Rate of Human Postures and Activities.
    Del Rosario MB; Lovell NH; Redmond SJ
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31248016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monitoring Student Activities with Smartwatches: On the Academic Performance Enhancement.
    Herrera-Alcántara O; Barrera-Animas AY; González-Mendoza M; Castro-Espinoza F
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987130
    [TBL] [Abstract][Full Text] [Related]  

  • 23. StresSense: Real-Time detection of stress-displaying behaviors.
    Saddaf Khan N; Qadir S; Anjum G; Uddin N
    Int J Med Inform; 2024 May; 185():105401. PubMed ID: 38493546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Classification accuracies of physical activities using smartphone motion sensors.
    Wu W; Dasgupta S; Ramirez EE; Peterson C; Norman GJ
    J Med Internet Res; 2012 Oct; 14(5):e130. PubMed ID: 23041431
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stress Detection via Keyboard Typing Behaviors by Using Smartphone Sensors and Machine Learning Techniques.
    Sağbaş EA; Korukoglu S; Balli S
    J Med Syst; 2020 Feb; 44(4):68. PubMed ID: 32072331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors.
    Shoaib M; Bosch S; Incel OD; Scholten H; Havinga PJ
    Sensors (Basel); 2016 Mar; 16(4):426. PubMed ID: 27023543
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Smartphone-Based Human Sitting Behaviors Recognition Using Inertial Sensor.
    Sinha VK; Patro KK; Pławiak P; Prakash AJ
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640971
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance Evaluation of State of the Art Systems for Physical Activity Classification of Older Subjects Using Inertial Sensors in a Real Life Scenario: A Benchmark Study.
    Awais M; Palmerini L; Bourke AK; Ihlen EA; Helbostad JL; Chiari L
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27973434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a real time activity monitoring Android application utilizing SmartStep.
    Hegde N; Melanson E; Sazonov E
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1886-1889. PubMed ID: 28268695
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Modified Kalman Filter for Integrating the Different Rate Data of Gyros and Accelerometers Retrieved from Android Smartphones in the GNSS/IMU Coupled Navigation.
    Yan W; Zhang Q; Wang L; Mao Y; Wang A; Zhao C
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32932662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biosensor-Driven IoT Wearables for Accurate Body Motion Tracking and Localization.
    Almujally NA; Khan D; Al Mudawi N; Alonazi M; Alazeb A; Algarni A; Jalal A; Liu H
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793886
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Automatic User-Adapted Physical Activity Classification Method Using Smartphones.
    Li P; Wang Y; Tian Y; Zhou TS; Li JS
    IEEE Trans Biomed Eng; 2017 Mar; 64(3):706-714. PubMed ID: 27249822
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mobile sensors based platform of Human Physical Activities Recognition for COVID-19 spread minimization.
    Sardar AW; Ullah F; Bacha J; Khan J; Ali F; Lee S
    Comput Biol Med; 2022 Jul; 146():105662. PubMed ID: 35654623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human activity classification with inertial sensors.
    Silva J; Monteiro M; Sousa F
    Stud Health Technol Inform; 2014; 200():101-4. PubMed ID: 24851971
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rigorous Performance Evaluation of Smartphone GNSS/IMU Sensors for ITS Applications.
    Gikas V; Perakis H
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27527187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning.
    Zimmermann T; Taetz B; Bleser G
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Real-Time Classification of Patients with Balance Disorders vs. Normal Subjects Using a Low-Cost Small Wireless Wearable Gait Sensor.
    Nukala BT; Nakano T; Rodriguez A; Tsay J; Lopez J; Nguyen TQ; Zupancic S; Lie DY
    Biosensors (Basel); 2016 Nov; 6(4):. PubMed ID: 27916817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Fast and Robust Deep Convolutional Neural Networks for Complex Human Activity Recognition Using Smartphone.
    Qi W; Su H; Yang C; Ferrigno G; De Momi E; Aliverti A
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31470521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying typical physical activity on smartphone with varying positions and orientations.
    Miao F; He Y; Liu J; Li Y; Ayoola I
    Biomed Eng Online; 2015 Apr; 14():32. PubMed ID: 25889811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.