BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31991686)

  • 1. Noncovalent Sericin-Chitosan Scaffold: Physical Properties and Low Cytotoxicity Effect.
    Chollakup R; Uttayarat P; Chworos A; Smitthipong W
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31991686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formulation and characterization of silk sericin-PVA scaffold crosslinked with genipin.
    Aramwit P; Siritientong T; Kanokpanont S; Srichana T
    Int J Biol Macromol; 2010 Dec; 47(5):668-75. PubMed ID: 20804781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Property studies on three-dimensional porous blended silk scaffolds].
    Rao J; Shen J; Quan D; Xu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Oct; 23(10):1264-70. PubMed ID: 19957853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on silk sericin and chitosan blend film: morphology and secondary structure characterizations.
    Srihanam P; Simcheur W; Srisuwan Y
    Pak J Biol Sci; 2009 Nov; 12(22):1487-90. PubMed ID: 20180324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of 2D crosslinked sericin membranes with improved biostability for skin tissue engineering.
    Nayak S; Talukdar S; Kundu SC
    Cell Tissue Res; 2012 Mar; 347(3):783-94. PubMed ID: 22327482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Preparation and cytocompatibility study of poly (epsilon-caprolactone)/silk sericin nanofibrous scaffolds].
    Li H; Li L; Qian Y; Cai K; Lu Y; Zhong L; Liu W; Yang L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Apr; 28(2):305-9. PubMed ID: 21604491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction.
    Kundu B; Kundu SC
    Biomaterials; 2012 Oct; 33(30):7456-67. PubMed ID: 22819495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensionally Printed Silk-Sericin-Based Hydrogel Scaffold: A Promising Visualized Dressing Material for Real-Time Monitoring of Wounds.
    Chen CS; Zeng F; Xiao X; Wang Z; Li XL; Tan RW; Liu WQ; Zhang YS; She ZD; Li SJ
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):33879-33890. PubMed ID: 30204403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced physical and biological properties of chitosan scaffold by silk proteins cross-linking.
    Wang F; Pang Y; Chen G; Wang W; Chen Z
    Carbohydr Polym; 2020 Feb; 229():115529. PubMed ID: 31826519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineralization and biocompatibility of Antheraea pernyi (A. pernyi) silk sericin film for potential bone tissue engineering.
    Yang M; Mandal N; Shuai Y; Zhou G; Min S; Zhu L
    Biomed Mater Eng; 2014; 24(1):815-24. PubMed ID: 24211968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of sterilization methods on the physical properties of silk sericin scaffolds.
    Siritientong T; Srichana T; Aramwit P
    AAPS PharmSciTech; 2011 Jun; 12(2):771-81. PubMed ID: 21671201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical and biological characterization of sericin-loaded copolymer liposomes stabilized by polyvinyl alcohol.
    Suktham K; Koobkokkruad T; Saesoo S; Saengkrit N; Surassmo S
    Colloids Surf B Biointerfaces; 2016 Dec; 148():487-495. PubMed ID: 27673445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silk Protein Composite Bioinks and Their 3D Scaffolds and In Vitro Characterization.
    Li JX; Zhao SX; Zhang YQ
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of molecular weight on the structure and mechanical properties of silk sericin gel, film, and sponge.
    Park CJ; Ryoo J; Ki CS; Kim JW; Kim IS; Bae DG; Um IC
    Int J Biol Macromol; 2018 Nov; 119():821-832. PubMed ID: 30081122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silk fibroin/sericin 3D sponges: The effect of sericin on structural and biological properties of fibroin.
    Siavashani AZ; Mohammadi J; Rottmar M; Senturk B; Nourmohammadi J; Sadeghi B; Huber L; Maniura-Weber K
    Int J Biol Macromol; 2020 Jun; 153():317-326. PubMed ID: 32126204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sericin removal from raw Bombyx mori silk scaffolds of high hierarchical order.
    Teuschl AH; van Griensven M; Redl H
    Tissue Eng Part C Methods; 2014 May; 20(5):431-9. PubMed ID: 24066942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of silk sericin nanofibers from a silk sericin-hope cocoon with electrospinning method.
    Zhang X; Khan MM; Yamamoto T; Tsukada M; Morikawa H
    Int J Biol Macromol; 2012 Mar; 50(2):337-47. PubMed ID: 22198656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skin equivalent tissue-engineered construct: co-cultured fibroblasts/ keratinocytes on 3D matrices of sericin hope cocoons.
    Nayak S; Dey S; Kundu SC
    PLoS One; 2013; 8(9):e74779. PubMed ID: 24058626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of non-toxic ionic-crosslinked chitosan-based microspheres as carriers for the controlled release of silk sericin.
    Aramwit P; Ekasit S; Yamdech R
    Biomed Microdevices; 2015 Oct; 17(5):84. PubMed ID: 26233725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibacterial chitosan/silk sericin 3D porous scaffolds as a wound dressing material.
    Karahaliloglu Z; Kilicay E; Denkbas EB
    Artif Cells Nanomed Biotechnol; 2017 Sep; 45(6):1-14. PubMed ID: 27396677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.