BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 31991906)

  • 1. Evaluation of Different Methods for Cultivating
    Hodel KVS; Fonseca LMDS; Santos IMDS; Cerqueira JC; Santos-Júnior RED; Nunes SB; Barbosa JDV; Machado BAS
    Polymers (Basel); 2020 Jan; 12(2):. PubMed ID: 31991906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications.
    Ul-Islam M; Khan T; Park JK
    Carbohydr Polym; 2012 Aug; 89(4):1189-97. PubMed ID: 24750931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of Bacterial Cellulose by
    Costa AFS; Almeida FCG; Vinhas GM; Sarubbo LA
    Front Microbiol; 2017; 8():2027. PubMed ID: 29089941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial cellulose production by Komagataeibacter hansenii using algae-based glucose.
    Uzyol HK; Saçan MT
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11154-11162. PubMed ID: 27312900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of chemical and physical conditions in selection of Gluconacetobacter hansenii ATCC 23769 strains with high capacity to produce bacterial cellulose for application as sustained antimicrobial drug-release supports.
    Lazarini SC; Yamada C; Barud HS; Trovatti E; Corbi PP; Lustri WR
    J Appl Microbiol; 2018 Sep; 125(3):777-791. PubMed ID: 29762885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of bacterial cellulose using different carbon sources and culture media.
    Mohammadkazemi F; Azin M; Ashori A
    Carbohydr Polym; 2015 Mar; 117():518-523. PubMed ID: 25498666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial cellulose/hyaluronic acid nanocomposites production through co-culturing Gluconacetobacter hansenii and Lactococcus lactis in a two-vessel circulating system.
    Liu K; Catchmark JM
    Bioresour Technol; 2019 Oct; 290():121715. PubMed ID: 31295575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano- and macroscale structural and mechanical properties of in situ synthesized bacterial cellulose/PEO-b-PPO-b-PEO biocomposites.
    Tercjak A; Gutierrez J; Barud HS; Domeneguetti RR; Ribeiro SJ
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4142-50. PubMed ID: 25633223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overview of bacterial cellulose composites: a multipurpose advanced material.
    Shah N; Ul-Islam M; Khattak WA; Park JK
    Carbohydr Polym; 2013 Nov; 98(2):1585-98. PubMed ID: 24053844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes.
    Stumpf TR; Pértile RA; Rambo CR; Porto LM
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4739-45. PubMed ID: 24094182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced production of bacterial cellulose by using Gluconacetobacter hansenii NCIM 2529 strain under shaking conditions.
    Mohite BV; Salunke BK; Patil SV
    Appl Biochem Biotechnol; 2013 Mar; 169(5):1497-511. PubMed ID: 23319186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis and characterization of antibacterial bacterial cellulose composite membrane composed of montmorillonite and exopolysaccharides.
    Yang Y; Zhou B; Yu L; Song G; Ge J; Du R
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127477. PubMed ID: 37863143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced mechanical properties of bacterial cellulose nanocomposites produced by co-culturing Gluconacetobacter hansenii and Escherichia coli under static conditions.
    Liu K; Catchmark JM
    Carbohydr Polym; 2019 Sep; 219():12-20. PubMed ID: 31151508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of cellulose and other exopolysaccharides produced from Gluconacetobacter strains.
    Fang L; Catchmark JM
    Carbohydr Polym; 2015 Jan; 115():663-9. PubMed ID: 25439946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical and structural property analysis of bacterial cellulose composites.
    Dayal MS; Catchmark JM
    Carbohydr Polym; 2016 Jun; 144():447-53. PubMed ID: 27083837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial cellulose production by Gluconacetobacter entanii using pecan nutshell as carbon source and its chemical functionalization.
    Dórame-Miranda RF; Gámez-Meza N; Medina-Juárez LÁ; Ezquerra-Brauer JM; Ovando-Martínez M; Lizardi-Mendoza J
    Carbohydr Polym; 2019 Mar; 207():91-99. PubMed ID: 30600072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial cellulose: recent progress in production and industrial applications.
    Avcioglu NH
    World J Microbiol Biotechnol; 2022 Apr; 38(5):86. PubMed ID: 35397756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial cellulose and its potential for biomedical applications.
    Wahid F; Huang LH; Zhao XQ; Li WC; Wang YY; Jia SR; Zhong C
    Biotechnol Adv; 2021 Dec; 53():107856. PubMed ID: 34666147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb.
    de Oliveira SA; da Silva BC; Riegel-Vidotti IC; Urbano A; de Sousa Faria-Tischer PC; Tischer CA
    Int J Biol Macromol; 2017 Apr; 97():642-653. PubMed ID: 28109811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529.
    Mohite BV; Patil SV
    Carbohydr Polym; 2014 Jun; 106():132-41. PubMed ID: 24721060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.