BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31991913)

  • 1. Dual Function of a Novel Bacterium,
    Gao X; Mu P; Zhu X; Chen X; Tang S; Wu Y; Miao X; Wang X; Wen J; Deng Y
    Toxins (Basel); 2020 Jan; 12(2):. PubMed ID: 31991913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slackia equolifaciens sp. nov., a human intestinal bacterium capable of producing equol.
    Jin JS; Kitahara M; Sakamoto M; Hattori M; Benno Y
    Int J Syst Evol Microbiol; 2010 Aug; 60(Pt 8):1721-1724. PubMed ID: 19734283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Counts of Slackia sp. strain NATTS in intestinal flora are correlated to serum concentrations of equol both in prostate cancer cases and controls in Japanese men.
    Sugiyama Y; Nagata Y; Fukuta F; Takayanagi A; Masumori N; Tsukamoto T; Akasaka H; Ohnishi H; Saito S; Miura T; Moriyama K; Tsuji H; Akaza H; Mori M
    Asian Pac J Cancer Prev; 2014; 15(6):2693-7. PubMed ID: 24761887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detoxification of trichothecene mycotoxins by a novel bacterium, Eggerthella sp. DII-9.
    Gao X; Mu P; Wen J; Sun Y; Chen Q; Deng Y
    Food Chem Toxicol; 2018 Feb; 112():310-319. PubMed ID: 29294345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of an enzyme system for daidzein-to-equol conversion in Slackia sp. strain NATTS.
    Tsuji H; Moriyama K; Nomoto K; Akaza H
    Appl Environ Microbiol; 2012 Feb; 78(4):1228-36. PubMed ID: 22179235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of the equol-producing bacterium Slackia sp. strain NATTS.
    Tsuji H; Moriyama K; Nomoto K; Miyanaga N; Akaza H
    Arch Microbiol; 2010 Apr; 192(4):279-87. PubMed ID: 20237913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete genomic sequence of the equol-producing bacterium Eggerthella sp. strain YY7918, isolated from adult human intestine.
    Yokoyama S; Oshima K; Nomura I; Hattori M; Suzuki T
    J Bacteriol; 2011 Oct; 193(19):5570-1. PubMed ID: 21914883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and expression of genes involved in the conversion of daidzein and genistein by the equol-forming bacterium Slackia isoflavoniconvertens.
    Schröder C; Matthies A; Engst W; Blaut M; Braune A
    Appl Environ Microbiol; 2013 Jun; 79(11):3494-502. PubMed ID: 23542626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of an equol-producing bacterium isolated from human faeces on isoflavone and lignan metabolism in mice.
    Tamura M; Hori S; Nakagawa H; Yamauchi S; Sugahara T
    J Sci Food Agric; 2016 Jul; 96(9):3126-32. PubMed ID: 26455424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and identification of a human intestinal bacterium capable of daidzein conversion.
    Guo Y; Zhao L; Fang X; Zhong Q; Liang H; Liang W; Wang L
    FEMS Microbiol Lett; 2021 May; 368(8):. PubMed ID: 33930123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship of serum levels and dietary intake of isoflavone, and the novel bacterium Slackia sp. strain NATTS with the risk of prostate cancer: a case-control study among Japanese men.
    Nagata Y; Sugiyama Y; Fukuta F; Takayanagi A; Masumori N; Tsukamoto T; Akasaka H; Ohnishi H; Saitoh S; Miura T; Moriyama K; Tsuji H; Akaza H; Mori M
    Int Urol Nephrol; 2016 Sep; 48(9):1453-60. PubMed ID: 27262851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of a novel equol-producing bacterium from human feces.
    Yokoyama S; Suzuki T
    Biosci Biotechnol Biochem; 2008 Oct; 72(10):2660-6. PubMed ID: 18838805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of (-)-5-Hydroxy-equol and 5-Hydroxy-dehydroequol from Soy Isoflavone, Genistein Using Microbial Whole Cell Bioconversion.
    Lee PG; Kim J; Kim EJ; Lee SH; Choi KY; Kazlauskas RJ; Kim BG
    ACS Chem Biol; 2017 Nov; 12(11):2883-2890. PubMed ID: 28985044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of equol from daidzein by gram-positive rod-shaped bacterium isolated from rat intestine.
    Minamida K; Tanaka M; Abe A; Sone T; Tomita F; Hara H; Asano K
    J Biosci Bioeng; 2006 Sep; 102(3):247-50. PubMed ID: 17046543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Microbial conversion of daidzein affects fecal equol concentration and bacterial composition of rats with or without ovariectomy].
    Zhang X; Zheng W; Huang S; Yao W
    Wei Sheng Wu Xue Bao; 2012 Jul; 52(7):866-74. PubMed ID: 23115971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Daidzein reductase of Eggerthella sp. YY7918, its octameric subunit structure containing FMN/FAD/4Fe-4S, and its enantioselective production of R-dihydroisoflavones.
    Kawada Y; Goshima T; Sawamura R; Yokoyama SI; Yanase E; Niwa T; Ebihara A; Inagaki M; Yamaguchi K; Kuwata K; Kato Y; Sakurada O; Suzuki T
    J Biosci Bioeng; 2018 Sep; 126(3):301-309. PubMed ID: 29699942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of novel S-equol-producing bacteria from brines of stinky tofu, a traditional fermented soy food in Taiwan.
    Abiru Y; Ueno T; Uchiyama S
    Int J Food Sci Nutr; 2013 Dec; 64(8):936-43. PubMed ID: 23869769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional Regulation of the Equol Biosynthesis Gene Cluster in
    Flórez AB; Vázquez L; Rodríguez J; Redruello B; Mayo B
    Nutrients; 2019 Apr; 11(5):. PubMed ID: 31052328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Screening and identification of a bacterium capable of converting daidzein to S-equol].
    Guo Y; Huang Y; Ye J; Zhang X; Xiao M
    Wei Sheng Wu Xue Bao; 2012 Jun; 52(6):696-702. PubMed ID: 22934349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial detoxification of eleven food and feed contaminating trichothecene mycotoxins.
    Ahad R; Zhou T; Lepp D; Pauls KP
    BMC Biotechnol; 2017 Mar; 17(1):30. PubMed ID: 28298196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.