These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 3199199)

  • 1. A unique membrane protein is expressed on early developing limbic system axons and cortical targets.
    Horton HL; Levitt P
    J Neurosci; 1988 Dec; 8(12):4653-61. PubMed ID: 3199199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The early commitment of fetal neurons to the limbic cortex.
    Barbe MF; Levitt P
    J Neurosci; 1991 Feb; 11(2):519-33. PubMed ID: 1992014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation, biochemical characterization and ultrastructural analysis of the limbic system-associated membrane protein (LAMP), a protein expressed by neurons comprising functional neural circuits.
    Zacco A; Cooper V; Chantler PD; Fisher-Hyland S; Horton HL; Levitt P
    J Neurosci; 1990 Jan; 10(1):73-90. PubMed ID: 1688937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of the mRNAs encoding the limbic system-associated membrane protein (LAMP): I. Adult rat brain.
    Reinoso BS; Pimenta AF; Levitt P
    J Comp Neurol; 1996 Nov; 375(2):274-88. PubMed ID: 8915830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of the mRNAs encoding the limbic system-associated membrane protein (LAMP): II. Fetal rat brain.
    Pimenta AF; Reinoso BS; Levitt P
    J Comp Neurol; 1996 Nov; 375(2):289-302. PubMed ID: 8915831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral cortical progenitors are fated to produce region-specific neuronal populations.
    Ferri RT; Levitt P
    Cereb Cortex; 1993; 3(3):187-98. PubMed ID: 8324369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental and regeneration-associated regulation of the limbic system associated membrane protein in explant cultures of the rat brain.
    Keller F; Levitt P
    Neuroscience; 1989; 28(2):455-74. PubMed ID: 2922110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth and targeting of subplate axons and establishment of major cortical pathways.
    De Carlos JA; O'Leary DD
    J Neurosci; 1992 Apr; 12(4):1194-211. PubMed ID: 1556593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane-associated molecules guide limbic and nonlimbic thalamocortical projections.
    Mann F; Zhukareva V; Pimenta A; Levitt P; Bolz J
    J Neurosci; 1998 Nov; 18(22):9409-19. PubMed ID: 9801379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and lesion induced reorganization of the cortical representation of the rat's body surface as revealed by immunocytochemistry for serotonin.
    Rhoades RW; Bennett-Clarke CA; Chiaia NL; White FA; Macdonald GJ; Haring JH; Jacquin MF
    J Comp Neurol; 1990 Mar; 293(2):190-207. PubMed ID: 19189711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connections between cells of the internal capsule, thalamus, and cerebral cortex in embryonic rat.
    Molnár Z; Cordery P
    J Comp Neurol; 1999 Oct; 413(1):1-25. PubMed ID: 10464367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of stage-specific neurite-associated proteins in the developing murine nervous system recognized by a monoclonal antibody.
    Yamamoto M; Boyer AM; Crandall JE; Edwards M; Tanaka H
    J Neurosci; 1986 Dec; 6(12):3576-94. PubMed ID: 3794790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prenatal development of the intrinsic neurons of the rat neocortex: a comparative study of the distribution of GABA-immunoreactive cells and the GABAA receptor.
    Cobas A; Fairén A; Alvarez-Bolado G; Sánchez MP
    Neuroscience; 1991; 40(2):375-97. PubMed ID: 1851254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional differences in neurotrophin availability regulate selective expression of VGF in the developing limbic cortex.
    Eagleson KL; Fairfull LD; Salton SR; Levitt P
    J Neurosci; 2001 Dec; 21(23):9315-24. PubMed ID: 11717365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organization of cerebral cortical afferent systems in the rat. II. Magnocellular basal nucleus.
    Saper CB
    J Comp Neurol; 1984 Jan; 222(3):313-42. PubMed ID: 6699210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axons of early generated neurons in cingulate cortex pioneer the corpus callosum.
    Koester SE; O'Leary DD
    J Neurosci; 1994 Nov; 14(11 Pt 1):6608-20. PubMed ID: 7965064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The limbic system-associated membrane protein is an Ig superfamily member that mediates selective neuronal growth and axon targeting.
    Pimenta AF; Zhukareva V; Barbe MF; Reinoso BS; Grimley C; Henzel W; Fischer I; Levitt P
    Neuron; 1995 Aug; 15(2):287-97. PubMed ID: 7646886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attraction of specific thalamic input by cerebral grafts depends on the molecular identity of the implant.
    Barbe MF; Levitt P
    Proc Natl Acad Sci U S A; 1992 May; 89(9):3706-10. PubMed ID: 1570290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization and development of nerve growth factor-sensitive rat basal forebrain neurons and their afferent projections to hippocampus and neocortex.
    Koh S; Loy R
    J Neurosci; 1989 Sep; 9(9):2999-0318. PubMed ID: 2552038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ontogeny of calcitonin gene-related peptide-immunoreactive structures in the rat forebrain and diencephalon.
    Inagaki S; Kubota Y; Shimada S; Tohyama M; Kito S; MacIntyre I; Takagi H
    Brain Res; 1988 Oct; 471(2):235-48. PubMed ID: 3263173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.