These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
744 related articles for article (PubMed ID: 31992189)
1. Evaluation of genetic diversity, agronomic traits, and anthracnose resistance in the NPGS Sudan Sorghum Core collection. Cuevas HE; Prom LK BMC Genomics; 2020 Jan; 21(1):88. PubMed ID: 31992189 [TBL] [Abstract][Full Text] [Related]
2. Genomic characterization of a core set of the USDA-NPGS Ethiopian sorghum germplasm collection: implications for germplasm conservation, evaluation, and utilization in crop improvement. Cuevas HE; Rosa-Valentin G; Hayes CM; Rooney WL; Hoffmann L BMC Genomics; 2017 Jan; 18(1):108. PubMed ID: 28125967 [TBL] [Abstract][Full Text] [Related]
3. Genome-Wide Association Mapping of Anthracnose ( Cuevas HE; Prom LK; Cruet-Burgos CM G3 (Bethesda); 2019 Sep; 9(9):2879-2885. PubMed ID: 31289022 [TBL] [Abstract][Full Text] [Related]
4. Exploring the genetic basis of anthracnose resistance in Ethiopian sorghum through a genome-wide association study. Birhanu C; Girma G; Mekbib F; Nida H; Tirfessa A; Lule D; Bekeko Z; Ayana G; Bejiga T; Bedada G; Tola M; Legesse T; Alemu H; Admasu S; Bekele A; Mengiste T BMC Genomics; 2024 Jul; 25(1):677. PubMed ID: 38977981 [TBL] [Abstract][Full Text] [Related]
5. Population structure of the NPGS Senegalese sorghum collection and its evaluation to identify new disease resistant genes. Cuevas HE; Prom LK; Rosa-Valentin G PLoS One; 2018; 13(2):e0191877. PubMed ID: 29444109 [TBL] [Abstract][Full Text] [Related]
6. A comprehensive phenotypic and genomic characterization of Ethiopian sorghum germplasm defines core collection and reveals rich genetic potential in adaptive traits. Girma G; Nida H; Tirfessa A; Lule D; Bejiga T; Seyoum A; Mekonen M; Nega A; Dessalegn K; Birhanu C; Bekele A; Gebreyohannes A; Ayana G; Tesso T; Ejeta G; Mengiste T Plant Genome; 2020 Nov; 13(3):e20055. PubMed ID: 33217211 [TBL] [Abstract][Full Text] [Related]
7. Genetic diversity, population structure and anthracnose resistance response in a novel sweet sorghum diversity panel. Cuevas HE; Knoll JE; Prom LK; Stutts LR; Vermerris W Front Plant Sci; 2023; 14():1249555. PubMed ID: 37929175 [TBL] [Abstract][Full Text] [Related]
8. Genome-Wide Association Mapping of Anthracnose ( Cuevas HE; Prom LK; Cooper EA; Knoll JE; Ni X Plant Genome; 2018 Jul; 11(2):. PubMed ID: 30025025 [TBL] [Abstract][Full Text] [Related]
9. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection. Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716 [TBL] [Abstract][Full Text] [Related]
10. Using Genotyping by Sequencing to Map Two Novel Anthracnose Resistance Loci in Sorghum bicolor. J Felderhoff T; M McIntyre L; Saballos A; Vermerris W G3 (Bethesda); 2016 Jul; 6(7):1935-46. PubMed ID: 27194807 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide association analysis of anthracnose resistance in sorghum [Sorghum bicolor (L.) Moench]. Mengistu G; Shimelis H; Assefa E; Lule D PLoS One; 2021; 16(12):e0261461. PubMed ID: 34929013 [TBL] [Abstract][Full Text] [Related]
12. Resistance to Foliar Diseases in a Mini-Core Collection of Sorghum Germplasm. Sharma R; Upadhyaya HD; Manjunatha SV; Rao VP; Thakur RP Plant Dis; 2012 Nov; 96(11):1629-1633. PubMed ID: 30727452 [TBL] [Abstract][Full Text] [Related]
13. The inheritance of anthracnose (Colletotrichum sublineola) resistance in sorghum differential lines QL3 and IS18760. Cuevas HE; Cruet-Burgos CM; Prom LK; Knoll JE; Stutts LR; Vermerris W Sci Rep; 2021 Oct; 11(1):20525. PubMed ID: 34654899 [TBL] [Abstract][Full Text] [Related]
14. Genome-Wide Association Mapping of Grain Mold Resistance in the US Sorghum Association Panel. Cuevas HE; Fermin-Pérez RA; Prom LK; Cooper EA; Bean S; Rooney WL Plant Genome; 2019 Jun; 12(2):. PubMed ID: 31290917 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide association analysis for response of Senegalese sorghum accessions to Texas isolates of anthracnose. Ahn E; Prom LK; Hu Z; Odvody G; Magill C Plant Genome; 2021 Jul; 14(2):e20097. PubMed ID: 33900689 [TBL] [Abstract][Full Text] [Related]
16. A Large-Scale Genome-Wide Association Analyses of Ethiopian Sorghum Landrace Collection Reveal Loci Associated With Important Traits. Girma G; Nida H; Seyoum A; Mekonen M; Nega A; Lule D; Dessalegn K; Bekele A; Gebreyohannes A; Adeyanju A; Tirfessa A; Ayana G; Taddese T; Mekbib F; Belete K; Tesso T; Ejeta G; Mengiste T Front Plant Sci; 2019; 10():691. PubMed ID: 31191590 [TBL] [Abstract][Full Text] [Related]
17. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm. Lee HY; Ro NY; Jeong HJ; Kwon JK; Jo J; Ha Y; Jung A; Han JW; Venkatesh J; Kang BC BMC Genet; 2016 Nov; 17(1):142. PubMed ID: 27842492 [TBL] [Abstract][Full Text] [Related]
18. The USDA barley core collection: genetic diversity, population structure, and potential for genome-wide association studies. Muñoz-Amatriaín M; Cuesta-Marcos A; Endelman JB; Comadran J; Bonman JM; Bockelman HE; Chao S; Russell J; Waugh R; Hayes PM; Muehlbauer GJ PLoS One; 2014; 9(4):e94688. PubMed ID: 24732668 [TBL] [Abstract][Full Text] [Related]
19. Genome wide association analysis of sorghum mini core lines regarding anthracnose, downy mildew, and head smut. Ahn E; Hu Z; Perumal R; Prom LK; Odvody G; Upadhyaya HD; Magill C PLoS One; 2019; 14(5):e0216671. PubMed ID: 31086384 [TBL] [Abstract][Full Text] [Related]
20. Genetic diversity analysis of Gossypium arboreum germplasm accessions using genotyping-by-sequencing. Li R; Erpelding JE Genetica; 2016 Oct; 144(5):535-545. PubMed ID: 27604991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]