These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31992474)

  • 1. A flow distribution and collection feature for ensuring scalable uniform flow in a chromatography device.
    Ghosh R; Chen G; Umatheva U; Gatt P
    J Chromatogr A; 2020 May; 1618():460892. PubMed ID: 31992474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cuboid chromatography device having short bed-height gives better protein separation at a significantly lower pressure drop than a taller column having the same bed-volume.
    Chen G; Roshankhah R; Ghosh R
    J Chromatogr A; 2021 Jun; 1647():462167. PubMed ID: 33962076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical modelling and evaluation of performance of cuboid packed-bed devices for chromatographic separations.
    Ghosh R; Chen G
    J Chromatogr A; 2017 Sep; 1515():138-145. PubMed ID: 28801045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility study for high-resolution multi-component separation of protein mixture using a cation-exchange cuboid packed-bed device.
    Chen G; Gerrior A; Ghosh R
    J Chromatogr A; 2018 May; 1549():25-30. PubMed ID: 29559265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation and experimental study of the transport of protein bands through cuboid packed-bed devices during chromatographic separations.
    Chen G; Ghosh R
    J Chromatogr A; 2020 Mar; 1615():460764. PubMed ID: 31826814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of process parameters on the efficiency of chromatographic separations using a cuboid packed-bed device.
    Chen G; Ghosh R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jun; 1086():23-28. PubMed ID: 29654983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A z
    Ghosh R; Chen G; Roshankhah R; Umatheva U; Gatt P
    J Chromatogr A; 2020 Oct; 1629():461453. PubMed ID: 32861093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient capture of monoclonal antibody from cell culture supernatant using protein A media contained in a cuboid packed-bed device.
    Chen G; Gerrior A; Durocher Y; Ghosh R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Dec; 1134-1135():121853. PubMed ID: 31785532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of fluid flow in membrane chromatography devices using computational fluid dynamic simulations.
    Roshankhah R; Pelton R; Ghosh R
    J Chromatogr A; 2023 Jun; 1699():464030. PubMed ID: 37137192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dry-compression packing of hydroxyapatite nanoparticles within a flat cuboid chromatography device and its use for fast protein separation.
    Ghosh R; Hale G; Durocher Y; Gatt P
    J Chromatogr A; 2022 Mar; 1667():462881. PubMed ID: 35149414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution purification of a therapeutic PEGylated protein using a cuboid packed-bed device.
    Chen G; Umatheva U; Pagano J; Yu D; Ghose S; Li Z; Ghosh R
    J Chromatogr A; 2020 Sep; 1630():461524. PubMed ID: 32920248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a Novel Cuboid Hollow Fiber Hemodialyzer Design Using Computational Fluid Dynamics.
    Xu Y; Umatheva U; Ghosh R
    Membranes (Basel); 2023 Jan; 13(1):. PubMed ID: 36676900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast, low-pressure chromatographic separation of proteins using hydroxyapatite nanoparticles.
    Chen G; Zhitomirsky I; Ghosh R
    Talanta; 2019 Jul; 199():472-477. PubMed ID: 30952286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of different packing methods on the hydrodynamic stability of chromatography columns.
    Dorn M; Eschbach F; Hekmat D; Weuster-Botz D
    J Chromatogr A; 2017 Sep; 1516():89-101. PubMed ID: 28818329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysing extraction uniformity from porous coffee beds using mathematical modelling and computational fluid dynamics approaches.
    Moroney KM; O'Connell K; Meikle-Janney P; O'Brien SBG; Walker GM; Lee WT
    PLoS One; 2019; 14(7):e0219906. PubMed ID: 31365538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The chromatographic performance of flow-through particles: A computational fluid dynamics study.
    Smits W; Nakanishi K; Desmet G
    J Chromatogr A; 2016 Jan; 1429():166-74. PubMed ID: 26724098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating two process scale chromatography column header designs using CFD.
    Johnson C; Natarajan V; Antoniou C
    Biotechnol Prog; 2014; 30(4):837-44. PubMed ID: 24616438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using a box instead of a column for process chromatography.
    Ghosh R
    J Chromatogr A; 2016 Oct; 1468():164-172. PubMed ID: 27688172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency of preparative and process column distribution systems.
    Gebauer KH; Luo XL; Barton NG; Stokes AN
    J Chromatogr A; 2003 Jul; 1006(1-2):45-60. PubMed ID: 12938875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printed porous media columns with fine control of column packing morphology.
    Fee C; Nawada S; Dimartino S
    J Chromatogr A; 2014 Mar; 1333():18-24. PubMed ID: 24529407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.