These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 31992591)

  • 1. The asymmetry and cooperativity of tandem glycine riboswitch aptamers.
    Torgerson CD; Hiller DA; Strobel SA
    RNA; 2020 May; 26(5):564-580. PubMed ID: 31992591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches.
    Baird NJ; Ferré-D'Amaré AR
    RNA; 2013 Feb; 19(2):167-76. PubMed ID: 23249744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-rescuable allosteric inhibition of aptamer II ligand affinity by aptamer I element in the shortened Vibrio cholerae glycine riboswitch.
    Sherman EM; Elsayed G; Esquiaqui JM; Elsayed M; Brinda B; Ye JD
    J Biochem; 2014 Dec; 156(6):323-31. PubMed ID: 25092436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a tertiary interaction important for cooperative ligand binding by the glycine riboswitch.
    Erion TV; Strobel SA
    RNA; 2011 Jan; 17(1):74-84. PubMed ID: 21098652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy.
    Ruff KM; Strobel SA
    RNA; 2014 Nov; 20(11):1775-88. PubMed ID: 25246650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory context drives conservation of glycine riboswitch aptamers.
    Crum M; Ram-Mohan N; Meyer MM
    PLoS Comput Biol; 2019 Dec; 15(12):e1007564. PubMed ID: 31860665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical basis of glycine riboswitch cooperativity.
    Kwon M; Strobel SA
    RNA; 2008 Jan; 14(1):25-34. PubMed ID: 18042658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Babina AM; Lea NE; Meyer MM
    mBio; 2017 Oct; 8(5):. PubMed ID: 29089431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Singlet glycine riboswitches bind ligand as well as tandem riboswitches.
    Ruff KM; Muhammad A; McCown PJ; Breaker RR; Strobel SA
    RNA; 2016 Nov; 22(11):1728-1738. PubMed ID: 27659053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An energetically beneficial leader-linker interaction abolishes ligand-binding cooperativity in glycine riboswitches.
    Sherman EM; Esquiaqui J; Elsayed G; Ye JD
    RNA; 2012 Mar; 18(3):496-507. PubMed ID: 22279151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and Engineering of a Clostridium Glycine Riboswitch and Its Use To Control a Novel Metabolic Pathway for 5-Aminolevulinic Acid Production in
    Zhou L; Ren J; Li Z; Nie J; Wang C; Zeng AP
    ACS Synth Biol; 2019 Oct; 8(10):2327-2335. PubMed ID: 31550137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Challenges of ligand identification for riboswitch candidates.
    Meyer MM; Hammond MC; Salinas Y; Roth A; Sudarsan N; Breaker RR
    RNA Biol; 2011; 8(1):5-10. PubMed ID: 21317561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A glycine-dependent riboswitch that uses cooperative binding to control gene expression.
    Mandal M; Lee M; Barrick JE; Weinberg Z; Emilsson GM; Ruzzo WL; Breaker RR
    Science; 2004 Oct; 306(5694):275-9. PubMed ID: 15472076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotides adjacent to the ligand-binding pocket are linked to activity tuning in the purine riboswitch.
    Stoddard CD; Widmann J; Trausch JJ; Marcano-Velázquez JG; Knight R; Batey RT
    J Mol Biol; 2013 May; 425(10):1596-611. PubMed ID: 23485418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural transitions and thermodynamics of a glycine-dependent riboswitch from Vibrio cholerae.
    Lipfert J; Das R; Chu VB; Kudaravalli M; Boyd N; Herschlag D; Doniach S
    J Mol Biol; 2007 Feb; 365(5):1393-406. PubMed ID: 17118400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Sequence on the Interactions of Divalent Cations with M-Box Riboswitches from
    Bahoua B; Sevdalis SE; Soto AM
    Biochemistry; 2021 Sep; 60(37):2781-2794. PubMed ID: 34472844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational Flexibility and Dynamics of the Internal Loop and Helical Regions of the Kink-Turn Motif in the Glycine Riboswitch by Site-Directed Spin-Labeling.
    Esquiaqui JM; Sherman EM; Ye JD; Fanucci GE
    Biochemistry; 2016 Aug; 55(31):4295-305. PubMed ID: 27427937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnesium controls aptamer-expression platform switching in the SAM-I riboswitch.
    Roy S; Hennelly SP; Lammert H; Onuchic JN; Sanbonmatsu KY
    Nucleic Acids Res; 2019 Apr; 47(6):3158-3170. PubMed ID: 30605518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene regulation by a glycine riboswitch singlet uses a finely tuned energetic landscape for helical switching.
    Torgerson CD; Hiller DA; Stav S; Strobel SA
    RNA; 2018 Dec; 24(12):1813-1827. PubMed ID: 30237163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.