These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31992697)

  • 1. Formation of bridgmanite-enriched layer at the top lower-mantle during magma ocean solidification.
    Xie L; Yoneda A; Yamazaki D; Manthilake G; Higo Y; Tange Y; Guignot N; King A; Scheel M; Andrault D
    Nat Commun; 2020 Jan; 11(1):548. PubMed ID: 31992697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating Magma Ocean Solidification on Earth Through Laser-Heated Diamond Anvil Cell Experiments.
    Nabiei F; Badro J; Boukaré CÉ; Hébert C; Cantoni M; Borensztajn S; Wehr N; Gillet P
    Geophys Res Lett; 2021 Jun; 48(12):e2021GL092446. PubMed ID: 34219835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-spin ferric iron in primordial bridgmanite crystallized from a deep magma ocean.
    Okuda Y; Ohta K; Nishihara Y; Hirao N; Wakamatsu T; Suehiro S; Kawaguchi SI; Ohishi Y
    Sci Rep; 2021 Sep; 11(1):19471. PubMed ID: 34593901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trace element partitioning in a deep magma ocean and the origin of the Hf-Nd mantle array.
    Ozawa K; Sakamoto N; Tsutsumi Y; Hirose K; Iizuka T; Yurimoto H
    Sci Adv; 2024 Aug; 10(33):eadp0021. PubMed ID: 39151010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Davemaoite as the mantle mineral with the highest melting temperature.
    Yin K; Belonoshko AB; Li Y; Lu X
    Sci Adv; 2023 Dec; 9(49):eadj2660. PubMed ID: 38055828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upside-down differentiation and generation of a 'primordial' lower mantle.
    Lee CT; Luffi P; Höink T; Li J; Dasgupta R; Hernlund J
    Nature; 2010 Feb; 463(7283):930-3. PubMed ID: 20164926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a Fe
    Kurnosov A; Marquardt H; Frost DJ; Ballaran TB; Ziberna L
    Nature; 2017 Mar; 543(7646):543-546. PubMed ID: 28289289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evidence for silica-enriched Earth's lower mantle with ferrous iron dominant bridgmanite.
    Mashino I; Murakami M; Miyajima N; Petitgirard S
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27899-27905. PubMed ID: 33093206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrous magnesium-rich magma genesis at the top of the lower mantle.
    Nakajima A; Sakamaki T; Kawazoe T; Suzuki A
    Sci Rep; 2019 May; 9(1):7420. PubMed ID: 31092856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in bridgmanite grain size accounts for the mid-mantle viscosity jump.
    Fei H; Ballmer MD; Faul U; Walte N; Cao W; Katsura T
    Nature; 2023 Aug; 620(7975):794-799. PubMed ID: 37407826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscosity of bridgmanite determined by in situ stress and strain measurements in uniaxial deformation experiments.
    Tsujino N; Yamazaki D; Nishihara Y; Yoshino T; Higo Y; Tange Y
    Sci Adv; 2022 Apr; 8(13):eabm1821. PubMed ID: 35353572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Earth's mantle.
    Helffrich GR; Wood BJ
    Nature; 2001 Aug; 412(6846):501-7. PubMed ID: 11484043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melting in the Earth's deep upper mantle caused by carbon dioxide.
    Dasgupta R; Hirschmann MM
    Nature; 2006 Mar; 440(7084):659-62. PubMed ID: 16572168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fate of MgSiO3 melts at core-mantle boundary conditions.
    Petitgirard S; Malfait WJ; Sinmyo R; Kupenko I; Hennet L; Harries D; Dane T; Burghammer M; Rubie DC
    Proc Natl Acad Sci U S A; 2015 Nov; 112(46):14186-90. PubMed ID: 26578761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural Fe-bearing aluminous bridgmanite in the Katol L6 chondrite.
    Ghosh S; Tiwari K; Miyahara M; Rohrbach A; Vollmer C; Stagno V; Ohtani E; Ray D
    Proc Natl Acad Sci U S A; 2021 Oct; 118(40):. PubMed ID: 34588307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature dependence of nitrogen solubility in bridgmanite and evolution of nitrogen storage capacity in the lower mantle.
    Fukuyama K; Kagi H; Inoue T; Kakizawa S; Shinmei T; Sano Y; Deligny C; Füri E
    Sci Rep; 2023 Mar; 13(1):3537. PubMed ID: 36864194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A crystallizing dense magma ocean at the base of the Earth's mantle.
    Labrosse S; Hernlund JW; Coltice N
    Nature; 2007 Dec; 450(7171):866-9. PubMed ID: 18064010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron isotopes trace primordial magma ocean cumulates melting in Earth's upper mantle.
    Williams HM; Matthews S; Rizo H; Shorttle O
    Sci Adv; 2021 Mar; 7(11):. PubMed ID: 33712459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composition of the Earth's interior: the importance of early events.
    Carlson RW; Boyet M
    Philos Trans A Math Phys Eng Sci; 2008 Nov; 366(1883):4077-103. PubMed ID: 18826922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium dissolution in bridgmanite in the Earth's deep mantle.
    Ko B; Greenberg E; Prakapenka V; Alp EE; Bi W; Meng Y; Zhang D; Shim SH
    Nature; 2022 Nov; 611(7934):88-92. PubMed ID: 36261527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.