BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 31992799)

  • 1. Effect of Cutaneous Feedback on the Perception of Virtual Object Weight during Manipulation.
    Park J; Son B; Han I; Lee W
    Sci Rep; 2020 Jan; 10(1):1357. PubMed ID: 31992799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual delay affects force scaling and weight perception during object lifting in virtual reality.
    van Polanen V; Tibold R; Nuruki A; Davare M
    J Neurophysiol; 2019 Apr; 121(4):1398-1409. PubMed ID: 30673365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Cutaneous Feedback on the Perceived Hardness of a Virtual Object.
    Park J; Oh Y; Tan HZ
    IEEE Trans Haptics; 2018; 11(4):518-530. PubMed ID: 30004888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of 2.5D haptic feedback on virtual object perception via a stylus.
    Kim G; Hwang D; Park J
    Sci Rep; 2021 Sep; 11(1):18954. PubMed ID: 34556780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating tactile feedback in addition to kinesthetic feedback for haptic shape rendering: a pilot study.
    Ratschat AL; van Rooij BM; Luijten J; Marchal-Crespo L
    Front Robot AI; 2024; 11():1298537. PubMed ID: 38660067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Haptic Glove Using Tendon-Driven Soft Robotic Mechanism.
    Baik S; Park S; Park J
    Front Bioeng Biotechnol; 2020; 8():541105. PubMed ID: 33154963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Examining the size-weight illusion with visuo-haptic conflict in immersive virtual reality.
    Buckingham G
    Q J Exp Psychol (Hove); 2019 Sep; 72(9):2168-2175. PubMed ID: 30789088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous supplementary tactile feedback can be applied (and then removed) to enhance precision manipulation.
    Cappello L; Alghilan W; Gabardi M; Leonardis D; Barsotti M; Frisoli A; Cipriani C
    J Neuroeng Rehabil; 2020 Aug; 17(1):120. PubMed ID: 32859222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring virtual reality object perception following sensory-motor interactions with different visuo-haptic collider properties.
    Girondini M; Montanaro M; Gallace A
    Sci Rep; 2024 May; 14(1):10011. PubMed ID: 38693174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shifty: A Weight-Shifting Dynamic Passive Haptic Proxy to Enhance Object Perception in Virtual Reality.
    Zenner A; Kruger A
    IEEE Trans Vis Comput Graph; 2017 Apr; 23(4):1285-1294. PubMed ID: 28129164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unimanual and bimanual weight perception of virtual objects with a new multi-finger haptic interface.
    Giachritsis CD; Ferre M; Barrio J; Wing AM
    Brain Res Bull; 2011 Jun; 85(5):271-5. PubMed ID: 21600271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tactile Feedback of Object Slip Facilitates Virtual Object Manipulation.
    Walker JM; Blank AA; Shewokis PA; OMalley MK
    IEEE Trans Haptics; 2015; 8(4):454-66. PubMed ID: 25861087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survey on Hand-Based Haptic Interaction for Virtual Reality.
    Tong Q; Wei W; Zhang Y; Xiao J; Wang D
    IEEE Trans Haptics; 2023; 16(2):154-170. PubMed ID: 37040254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Wearable Haptic Systems for the Fingers in Augmented Reality Applications.
    Maisto M; Pacchierotti C; Chinello F; Salvietti G; De Luca A; Prattichizzo D
    IEEE Trans Haptics; 2017; 10(4):511-522. PubMed ID: 28391207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of Kinesthetic and Artificial Tactile Noise and Variability on Stiffness Perception.
    Kossowsky H; Farajian M; Nisky I
    IEEE Trans Haptics; 2022; 15(2):351-362. PubMed ID: 35271449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ascending and Descending in Virtual Reality: Simple and Safe System Using Passive Haptics.
    Nagao R; Matsumoto K; Narumi T; Tanikawa T; Hirose M
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1584-1593. PubMed ID: 29543176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can Wearable Haptic Devices Foster the Embodiment of Virtual Limbs?
    Frohner J; Salvietti G; Beckerle P; Prattichizzo D
    IEEE Trans Haptics; 2019; 12(3):339-349. PubMed ID: 30582554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Pseudo-Haptic Interactions with Soft Objects in Virtual Environments.
    Li M; Sareh S; Xu G; Ridzuan MB; Luo S; Xie J; Wurdemann H; Althoefer K
    PLoS One; 2016; 11(6):e0157681. PubMed ID: 27352234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force Control During the Precision Grip Translates to Virtual Reality.
    Gunter C; Liu Y; Leib R; Franklin D
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4171-4174. PubMed ID: 36086239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a "natural" grasping task induces pantomime-like grasps.
    Whitwell RL; Ganel T; Byrne CM; Goodale MA
    Front Hum Neurosci; 2015; 9():216. PubMed ID: 25999834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.