These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31993119)

  • 1. Prey density affects predator foraging strategy in an Antarctic ecosystem.
    Busdieker KM; Patrick SC; Trevail AM; Descamps S
    Ecol Evol; 2020 Jan; 10(1):350-359. PubMed ID: 31993119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploitation of inland-breeding Antarctic petrels by south polar skuas.
    Brooke ML; Keith D; Røv N
    Oecologia; 1999 Oct; 121(1):25-31. PubMed ID: 28307885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High inter- and intraspecific niche overlap among three sympatrically breeding, closely related seabird species: Generalist foraging as an adaptation to a highly variable environment?
    Dehnhard N; Achurch H; Clarke J; Michel LN; Southwell C; Sumner MD; Eens M; Emmerson L
    J Anim Ecol; 2020 Jan; 89(1):104-119. PubMed ID: 31368149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sharing menus and kids' specials: Inter- and intraspecific differences in stable isotope niches between sympatrically breeding storm-petrels.
    Ausems ANMA; Skrzypek G; Wojczulanis-Jakubas K; Jakubas D
    Sci Total Environ; 2020 Aug; 728():138768. PubMed ID: 32339838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. At-Sea Distribution and Prey Selection of Antarctic Petrels and Commercial Krill Fisheries.
    Descamps S; Tarroux A; Cherel Y; Delord K; Godø OR; Kato A; Krafft BA; Lorentsen SH; Ropert-Coudert Y; Skaret G; Varpe Ø
    PLoS One; 2016; 11(8):e0156968. PubMed ID: 27533327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central-place foraging and ecological effects of an invasive predator across multiple habitats.
    Benkwitt CE
    Ecology; 2016 Oct; 97(10):2729-2739. PubMed ID: 27859117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density-dependent effects of multiple predators sharing a common prey in an endophytic habitat.
    Aukema BH; Clayton MK; Raffa KF
    Oecologia; 2004 May; 139(3):418-26. PubMed ID: 14968356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fire as a driver and mediator of predator-prey interactions.
    Doherty TS; Geary WL; Jolly CJ; Macdonald KJ; Miritis V; Watchorn DJ; Cherry MJ; Conner LM; González TM; Legge SM; Ritchie EG; Stawski C; Dickman CR
    Biol Rev Camb Philos Soc; 2022 Aug; 97(4):1539-1558. PubMed ID: 35320881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the assessment of predator functional responses by considering alternate prey and predator interactions.
    Chan K; Boutin S; Hossie TJ; Krebs CJ; O'Donoghue M; Murray DL
    Ecology; 2017 Jul; 98(7):1787-1796. PubMed ID: 28369822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predation as a cost of sexual communication in nocturnal seabirds: an experimental approach using acoustic signals.
    Mougeot F; Bretagnolle V
    Anim Behav; 2000 Nov; 60(5):647-656. PubMed ID: 11082235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limited spatial response to direct predation risk by African herbivores following predator reintroduction.
    Davies AB; Tambling CJ; Kerley GI; Asner GP
    Ecol Evol; 2016 Aug; 6(16):5728-48. PubMed ID: 27547350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density-dependent prey mortality is determined by the spatial scale of predator foraging.
    McCarthy EK; White JW
    Oecologia; 2016 Feb; 180(2):305-11. PubMed ID: 26116266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ measures of foraging success and prey encounter reveal marine habitat-dependent search strategies.
    Thums M; Bradshaw CJ; Hindelli MA
    Ecology; 2011 Jun; 92(6):1258-70. PubMed ID: 21797154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partitioning mechanisms of predator interference in different habitats.
    Griffen BD; Byers JE
    Oecologia; 2006 Jan; 146(4):608-14. PubMed ID: 16086166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein Deimination and Extracellular Vesicle Profiles in Antarctic Seabirds.
    Phillips RA; Kraev I; Lange S
    Biology (Basel); 2020 Jan; 9(1):. PubMed ID: 31936359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying Risk: Concurrent Overlap of the Antarctic Krill Fishery with Krill-Dependent Predators in the Scotia Sea.
    Hinke JT; Cossio AM; Goebel ME; Reiss CS; Trivelpiece WZ; Watters GM
    PLoS One; 2017; 12(1):e0170132. PubMed ID: 28085943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional responses: a question of alternative prey and predator density.
    Tschanz B; Bersier LF; Bacher S
    Ecology; 2007 May; 88(5):1300-8. PubMed ID: 17536415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A functional response model of a predator population foraging in a patchy habitat.
    Nachman G
    J Anim Ecol; 2006 Jul; 75(4):948-58. PubMed ID: 17009758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine-scale habitat modeling of a top marine predator: do prey data improve predictive capacity?
    Torres LG; Read AJ; Halpin P
    Ecol Appl; 2008 Oct; 18(7):1702-17. PubMed ID: 18839765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Birds of prey as limiting factors of gamebird populations in Europe: a review.
    Valkama J; Korpimäki E; Arroyo B; Beja P; Bretagnolle V; Bro E; Kenward R; Mañosa S; Redpath SM; Thirgood S; Viñuela J
    Biol Rev Camb Philos Soc; 2005 May; 80(2):171-203. PubMed ID: 15921048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.