BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31993251)

  • 1. Quantifying Age-Related Changes in Skin Wound Metabolism Using
    Jones JD; Ramser HE; Woessner AE; Veves A; Quinn KP
    Adv Wound Care (New Rochelle); 2020 Mar; 9(3):90-102. PubMed ID: 31993251
    [No Abstract]   [Full Text] [Related]  

  • 2. In vivo monitoring the changes of interstitial pH and FAD/NADH ratio by fluorescence spectroscopy in healing skin wounds.
    Mokrý M; Gál P; Vidinský B; Kusnír J; Dubayová K; Mozes S; Sabo J
    Photochem Photobiol; 2006; 82(3):793-7. PubMed ID: 16435883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Extraction of Skin Wound Healing Biomarkers From In Vivo Label-Free Multiphoton Microscopy Using Convolutional Neural Networks.
    Jones JD; Rodriguez MR; Quinn KP
    Lasers Surg Med; 2021 Oct; 53(8):1086-1095. PubMed ID: 33442889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo multiphoton microscopy detects longitudinal metabolic changes associated with delayed skin wound healing.
    Jones JD; Ramser HE; Woessner AE; Quinn KP
    Commun Biol; 2018; 1():198. PubMed ID: 30480099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo fluorescence lifetime imaging of macrophage intracellular metabolism during wound responses in zebrafish.
    Miskolci V; Tweed KE; Lasarev MR; Britt EC; Walsh AJ; Zimmerman LJ; McDougal CE; Cronan MR; Fan J; Sauer JD; Skala MC; Huttenlocher A
    Elife; 2022 Feb; 11():. PubMed ID: 35200139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia.
    Skala MC; Riching KM; Gendron-Fitzpatrick A; Eickhoff J; Eliceiri KW; White JG; Ramanujam N
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19494-9. PubMed ID: 18042710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-Free Optical Metabolic Imaging in Cells and Tissues.
    Georgakoudi I; Quinn KP
    Annu Rev Biomed Eng; 2023 Jun; 25():413-443. PubMed ID: 37104650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD.
    Kolenc OI; Quinn KP
    Antioxid Redox Signal; 2019 Feb; 30(6):875-889. PubMed ID: 29268621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autofluorescence lifetime imaging of cellular metabolism: Sensitivity toward cell density, pH, intracellular, and intercellular heterogeneity.
    Chacko JV; Eliceiri KW
    Cytometry A; 2019 Jan; 95(1):56-69. PubMed ID: 30296355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H.
    Cao R; Wallrabe H; Siller K; Rehman Alam S; Periasamy A
    Cytometry A; 2019 Jan; 95(1):110-121. PubMed ID: 30604477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength.
    Cao R; Wallrabe H; Periasamy A
    J Biomed Opt; 2020 Jan; 25(1):1-16. PubMed ID: 31920048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Live-Cell Imaging Quantifies Changes in Function and Metabolic NADH Autofluorescence During Macrophage-Mediated Phagocytosis of Tumor Cells.
    Bess SN; Igoe MJ; Muldoon TJ
    Immunol Invest; 2024 Feb; 53(2):210-223. PubMed ID: 37999933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic imaging with the use of fluorescence lifetime imaging microscopy (FLIM) accurately detects mitochondrial dysfunction in mouse oocytes.
    Sanchez T; Wang T; Pedro MV; Zhang M; Esencan E; Sakkas D; Needleman D; Seli E
    Fertil Steril; 2018 Dec; 110(7):1387-1397. PubMed ID: 30446247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiphoton redox ratio imaging for metabolic monitoring in vivo.
    Skala M; Ramanujam N
    Methods Mol Biol; 2010; 594():155-62. PubMed ID: 20072916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-invasive monitoring of pharmacodynamics during the skin wound healing process using multimodal optical microscopy.
    Rico-Jimenez J; Lee JH; Alex A; Musaad S; Chaney E; Barkalifa R; Spillman DR; Olson E; Adams D; Marjanovic M; Arp Z; Boppart SA
    BMJ Open Diabetes Res Care; 2020 Apr; 8(1):. PubMed ID: 32327442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling aberrant wound healing using tissue-engineered skin constructs and multiphoton microscopy.
    Torkian BA; Yeh AT; Engel R; Sun CH; Tromberg BJ; Wong BJ
    Arch Facial Plast Surg; 2004; 6(3):180-7. PubMed ID: 15148128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quenched coumarin derivatives as fluorescence lifetime phantoms for NADH and FAD.
    Freymüller C; Kalinina S; Rück A; Sroka R; Rühm A
    J Biophotonics; 2021 Jul; 14(7):e202100024. PubMed ID: 33749988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of autofluorescence from intracellular proteins in multiphoton fluorescence lifetime imaging.
    Malak M; James J; Grantham J; Ericson MB
    Sci Rep; 2022 Oct; 12(1):16584. PubMed ID: 36198710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of endogenous fluorescence in nonsmall lung cancerous cells: A comparison with nonmalignant lung normal cells.
    Awasthi K; Chang FL; Hsieh PY; Hsu HY; Ohta N
    J Biophotonics; 2020 May; 13(5):e201960210. PubMed ID: 32067342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous NAD(P)H and FAD fluorescence lifetime microscopy of long UVA-induced metabolic stress in reconstructed human skin.
    Ung TPL; Lim S; Solinas X; Mahou P; Chessel A; Marionnet C; Bornschlögl T; Beaurepaire E; Bernerd F; Pena AM; Stringari C
    Sci Rep; 2021 Nov; 11(1):22171. PubMed ID: 34772978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.