BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31993251)

  • 21. In vivo wound healing diagnosis with second harmonic and fluorescence lifetime imaging.
    Deka G; Wu WW; Kao FJ
    J Biomed Opt; 2013 Jun; 18(6):061222. PubMed ID: 23748703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical Redox Imaging of Fixed Unstained Muscle Slides Reveals Useful Biological Information.
    Xu HN; Zhao H; Chellappa K; Davis JG; Nioka S; Baur JA; Li LZ
    Mol Imaging Biol; 2019 Jun; 21(3):417-425. PubMed ID: 30977079
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 670 nm photobiomodulation improves the mitochondrial redox state of diabetic wounds.
    Mehrvar S; Mostaghimi S; Foomani FH; Abroe B; Eells JT; Gopalakrishnan S; Ranji M
    Quant Imaging Med Surg; 2021 Jan; 11(1):107-118. PubMed ID: 33392015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In Vivo Autofluorescence Imaging of Tumor Heterogeneity in Response to Treatment.
    Shah AT; Diggins KE; Walsh AJ; Irish JM; Skala MC
    Neoplasia; 2015 Dec; 17(12):862-870. PubMed ID: 26696368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using in vivo multiphoton fluorescence lifetime imaging to unravel disease-specific changes in the liver redox state.
    Barkauskas DS; Medley G; Liang X; Mohammed YH; Thorling CA; Wang H; Roberts MS
    Methods Appl Fluoresc; 2020 Jul; 8(3):034003. PubMed ID: 32422610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectroscopic Study of Time-Varying Optical Redox Ratio in NADH/FAD Solution.
    Lim SY; Jang JI; Yoon H; Kim HM
    J Phys Chem B; 2022 Dec; 126(47):9840-9849. PubMed ID: 36399328
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autofluorescence spectroscopy in redox monitoring across cell confluencies.
    Yong D; Abdul Rahim AA; Thwin CS; Chen S; Zhai W; Win Naing M
    PLoS One; 2019; 14(12):e0226757. PubMed ID: 31851724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Natural NADH and FAD Autofluorescence as Label-Free Biomarkers for Discriminating Subtypes and Functional States of Immune Cells.
    Lemire S; Thoma OM; Kreiss L; Völkl S; Friedrich O; Neurath MF; Schürmann S; Waldner MJ
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing.
    Stringari C; Abdeladim L; Malkinson G; Mahou P; Solinas X; Lamarre I; Brizion S; Galey JB; Supatto W; Legouis R; Pena AM; Beaurepaire E
    Sci Rep; 2017 Jun; 7(1):3792. PubMed ID: 28630487
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging Redox State in Mouse Muscles of Different Ages.
    Moon L; Frederick DW; Baur JA; Li LZ
    Adv Exp Med Biol; 2017; 977():51-57. PubMed ID: 28685427
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical imaging detects metabolic signatures associated with oocyte quality†.
    Tan TCY; Brown HM; Thompson JG; Mustafa S; Dunning KR
    Biol Reprod; 2022 Oct; 107(4):1014-1025. PubMed ID: 35863764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in the redox state and endogenous fluorescence of in vivo human skin due to intrinsic and photo-aging, measured by multiphoton tomography with fluorescence lifetime imaging.
    Sanchez WY; Obispo C; Ryan E; Grice JE; Roberts MS
    J Biomed Opt; 2013 Jun; 18(6):061217. PubMed ID: 23187730
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level.
    Yu Q; Heikal AA
    J Photochem Photobiol B; 2009 Apr; 95(1):46-57. PubMed ID: 19179090
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D Optical Cryo-Imaging Method: A Novel Approach to Quantify Renal Mitochondrial Bioenergetics Dysfunction.
    Mehrvar S; Camara AKS; Ranji M
    Methods Mol Biol; 2021; 2276():259-270. PubMed ID: 34060048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Patient-derived cancer organoid tracking with wide-field one-photon redox imaging to assess treatment response.
    Gil DA; Deming D; Skala MC
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33754540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mapping metabolic changes by noninvasive, multiparametric, high-resolution imaging using endogenous contrast.
    Liu Z; Pouli D; Alonzo CA; Varone A; Karaliota S; Quinn KP; Münger K; Karalis KP; Georgakoudi I
    Sci Adv; 2018 Mar; 4(3):eaap9302. PubMed ID: 29536043
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extracellular pH affects the fluorescence lifetimes of metabolic co-factors.
    Schmitz R; Tweed K; Walsh C; Walsh AJ; Skala MC
    J Biomed Opt; 2021 May; 26(5):. PubMed ID: 34032035
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-Photon Microscopy (TPM) and Fluorescence Lifetime Imaging Microscopy (FLIM) of Retinal Pigment Epithelium (RPE) of Mice In Vivo.
    Miura Y
    Methods Mol Biol; 2018; 1753():73-88. PubMed ID: 29564782
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma.
    Shah AT; Demory Beckler M; Walsh AJ; Jones WP; Pohlmann PR; Skala MC
    PLoS One; 2014; 9(3):e90746. PubMed ID: 24595244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo wound healing diagnosis with second harmonic and fluorescence lifetime imaging.
    Deka G; Wu WW; Kao FJ
    J Biomed Opt; 2013 Jun; 18(6):061222. PubMed ID: 23264966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.