These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31993257)

  • 21. How training citizen scientists affects the accuracy and precision of phenological data.
    Feldman RE; Žemaitė I; Miller-Rushing AJ
    Int J Biometeorol; 2018 Aug; 62(8):1421-1435. PubMed ID: 29732472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatiotemporal Variation of
    Wang X; Liu Y; Li X; He S; Zhong M; Shang F
    Front Plant Sci; 2021; 12():716071. PubMed ID: 35126403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-cost observations and experiments return a high value in plant phenology research.
    McDonough MacKenzie C; Gallinat AS; Zipf L
    Appl Plant Sci; 2020 Apr; 8(4):e11338. PubMed ID: 32351799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Better soon than never: climate change induces strong phenological reassembly in the flowering of a Mediterranean shrub community.
    Pareja-Bonilla D; Arista M; Morellato LPC; Ortiz PL
    Ann Bot; 2023 Dec; ():. PubMed ID: 38099507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of climate warming on flowering phenology in relation to historical annual and seasonal temperatures and plant functional traits.
    Geissler C; Davidson A; Niesenbaum RA
    PeerJ; 2023; 11():e15188. PubMed ID: 37101791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting spring migration of two European amphibian species with plant phenology using citizen science data.
    Peer M; Dörler D; Zaller JG; Scheifinger H; Schweiger S; Laaha G; Neuwirth G; Hübner T; Heigl F
    Sci Rep; 2021 Nov; 11(1):21611. PubMed ID: 34732795
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A pipeline for the rapid collection of color data from photographs.
    Luong Y; Gasca-Herrera A; Misiewicz TM; Carter BE
    Appl Plant Sci; 2023; 11(5):e11546. PubMed ID: 37915431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New citizen science initiative enhances flowering onset predictions for fruit trees in Great Britain.
    Wyver C; Potts SG; Pitts R; Riley M; Janetzko G; Senapathi D
    Hortic Res; 2024 Jun; 11(6):uhae122. PubMed ID: 38919557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Herbarium specimens can reveal impacts of climate change on plant phenology; a review of methods and applications.
    Jones CA; Daehler CC
    PeerJ; 2018; 6():e4576. PubMed ID: 29632745
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community.
    Mulder CP; Iles DT; Rockwell RF
    Glob Chang Biol; 2017 Feb; 23(2):801-814. PubMed ID: 27273120
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.
    Iler AM; Inouye DW; Høye TT; Miller-Rushing AJ; Burkle LA; Johnston EB
    Glob Chang Biol; 2013 Aug; 19(8):2348-59. PubMed ID: 23640772
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Beyond the usual climate? Factors determining flowering and fruiting phenology across a genus over 117 years.
    Bartlett KB; Austin MW; Beck JB; Zanne AE; Smith AB
    Am J Bot; 2023 Jul; 110(7):e16188. PubMed ID: 37200535
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flowering Phenology Shifts in Response to Functional Traits, Growth Form, and Phylogeny of Woody Species in a Desert Area.
    Wang Y; Yang XD; Ali A; Lv GH; Long YX; Wang YY; Ma YG; Xu CC
    Front Plant Sci; 2020; 11():536. PubMed ID: 32435256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Consistent trait-temperature interactions drive butterfly phenology in both incidental and survey data.
    Larsen EA; Belitz MW; Guralnick RP; Ries L
    Sci Rep; 2022 Aug; 12(1):13370. PubMed ID: 35927297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overlooked climate parameters best predict flowering onset: Assessing phenological models using the elastic net.
    Park IW; Mazer SJ
    Glob Chang Biol; 2018 Dec; 24(12):5972-5984. PubMed ID: 30218548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The ecological implications of intra- and inter-species variation in phenological sensitivity.
    Xie Y; Thammavong HT; Park DS
    New Phytol; 2022 Oct; 236(2):760-773. PubMed ID: 35801834
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flowering time responses to warming drive reproductive fitness in a changing Arctic.
    Collins CG; Angert A; Clark K; Elmendorf S; Elphinstone C; Henry G
    Ann Bot; 2024 Jan; ():. PubMed ID: 38252914
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Practice makes the expert: The importance of training volunteers in the generation of phenological data from photographs of biodiversity observation platforms.
    Salomé-Díaz J; Golubov J; Díaz-Segura O; Ramírez-Gutiérrez MC; Sifuentes de la Torre S; Koleff P; Quintero E; Martínez AJ
    PLoS One; 2023; 18(3):e0282750. PubMed ID: 36881607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fire reduces eucalypt forest flowering phenology at the landscape-scale.
    Dixon DJ; Duncan JMA; Callow JN; Setterfield SA; Pauli N
    Sci Total Environ; 2023 Oct; 894():164828. PubMed ID: 37331389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changing Climate Drives Divergent and Nonlinear Shifts in Flowering Phenology across Elevations.
    Rafferty NE; Diez JM; Bertelsen CD
    Curr Biol; 2020 Feb; 30(3):432-441.e3. PubMed ID: 31902725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.