These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 31993290)
1. Ionic Conductive Gels for Optically Manipulatable Microwave Stealth Structures. Song WL; Zhang YJ; Zhang KL; Wang K; Zhang L; Chen LL; Huang Y; Chen M; Lei H; Chen H; Fang D Adv Sci (Weinh); 2020 Jan; 7(2):1902162. PubMed ID: 31993290 [TBL] [Abstract][Full Text] [Related]
2. Graphene-Based Optically Transparent Metasurface Capable of Dual-Polarized Modulation for Electromagnetic Stealth. Zhang J; Shao L; Li Z; Zhang C; Zhu W ACS Appl Mater Interfaces; 2022 Jul; 14(27):31075-31084. PubMed ID: 35770880 [TBL] [Abstract][Full Text] [Related]
3. Metasurface with Electrically Tunable Microwave Transmission Amplitude and Broadband High Optical Transparency. Lu Z; Xia C; Zhang Y; Tan J ACS Appl Mater Interfaces; 2023 Jun; 15(24):29440-29448. PubMed ID: 37284791 [TBL] [Abstract][Full Text] [Related]
4. Microwave absorbing characteristics of porphyrin derivates: a loop of conjugated structure. Dogari H; Peymanfar R; Ghafuri H RSC Adv; 2023 Jul; 13(32):22205-22215. PubMed ID: 37492511 [TBL] [Abstract][Full Text] [Related]
5. Bioinspired Double-Broadband Switchable Microwave Absorbing Grid Structures with Inflatable Kresling Origami Actuators. Zhang Z; Lei H; Duan S; Zhao Z; Chen M; Wang C; Fang D Adv Sci (Weinh); 2024 Jan; 11(4):e2306119. PubMed ID: 38036422 [TBL] [Abstract][Full Text] [Related]
6. Flexible and transparent metadevices for terahertz, microwave, and infrared multispectral stealth based on modularization design. Sun B; Huang L; Ding J; Luo Y; Zhang Y; Li R; Wang X; Wen Q; Xiao S Opt Express; 2023 Feb; 31(5):8650-8667. PubMed ID: 36859976 [TBL] [Abstract][Full Text] [Related]
7. Optically Transparent, Ultra-Broadband, and Water-Based Microwave Meta-absorber with ITO Metasurfaces. Yang L; Chen K; Zhang Z; Wei Y; Shen Y; Wang X; Zhuang S ACS Appl Mater Interfaces; 2023 Nov; 15(46):54098-54104. PubMed ID: 37939384 [TBL] [Abstract][Full Text] [Related]
8. Progress in microwave absorbing materials: A critical review. Sharma S; Parne SR; Panda SSS; Gandi S Adv Colloid Interface Sci; 2024 May; 327():103143. PubMed ID: 38598925 [TBL] [Abstract][Full Text] [Related]
9. Reconfigurable and optically transparent microwave absorbers based on deep eutectic solvent-gated graphene. Grande M; Bianco GV; Perna FM; Capriati V; Capezzuto P; Scalora M; Bruno G; D'Orazio A Sci Rep; 2019 Apr; 9(1):5463. PubMed ID: 30940845 [TBL] [Abstract][Full Text] [Related]
10. Ni Flower/MXene-Melamine Foam Derived 3D Magnetic/Conductive Networks for Ultra-Efficient Microwave Absorption and Infrared Stealth. Cheng H; Pan Y; Wang X; Liu C; Shen C; Schubert DW; Guo Z; Liu X Nanomicro Lett; 2022 Feb; 14(1):63. PubMed ID: 35190917 [TBL] [Abstract][Full Text] [Related]
11. Transparent Perfect Microwave Absorber Employing Asymmetric Resonance Cavity. Wang H; Zhang Y; Ji C; Zhang C; Liu D; Zhang Z; Lu Z; Tan J; Guo LJ Adv Sci (Weinh); 2019 Oct; 6(19):1901320. PubMed ID: 31592425 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of Lightweight Renewable Microwave-Absorbing Bio-Polyurethane/Fe Xu X; Tian X; Bo G; Su X; Yan J; Yan Y Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293150 [TBL] [Abstract][Full Text] [Related]
13. Weather-Manipulated Smart Broadband Electromagnetic Metamaterials. Zhang KL; Cheng XD; Zhang YJ; Chen M; Chen H; Yang Y; Song WL; Fang D ACS Appl Mater Interfaces; 2018 Nov; 10(47):40815-40823. PubMed ID: 30384586 [TBL] [Abstract][Full Text] [Related]
14. Dendrimer-assisted defect and morphology regulation for improving optical, hyperthermia, and microwave-absorbing features. Sheykhmoradi S; Ghaffari A; Mirkhan A; Ji G; Tan S; Peymanfar R Dalton Trans; 2024 Feb; 53(9):4222-4236. PubMed ID: 38332744 [TBL] [Abstract][Full Text] [Related]
15. Transparent broadband absorber based on a multilayer ITO conductive film. Zheng J; Zheng H; Pang Y; Qu B; Xu Z Opt Express; 2023 Jan; 31(3):3731-3742. PubMed ID: 36785359 [TBL] [Abstract][Full Text] [Related]
16. Microwave-Absorbing Foams with Adjustable Absorption Frequency and Structural Coloration. Wu L; Liu J; Liu X; Mou P; Lv H; Liu R; Wen J; Zhao J; Li J; Wang G Nano Lett; 2024 Mar; 24(11):3369-3377. PubMed ID: 38373202 [TBL] [Abstract][Full Text] [Related]
17. Multispectral smart window: Dynamic light modulation and electromagnetic microwave shielding. Zhang R; Song Z; Cao W; Gao G; Yang L; He Y; Han J; Zhang Z; Wang T; Zhu J Light Sci Appl; 2024 Aug; 13(1):223. PubMed ID: 39209835 [TBL] [Abstract][Full Text] [Related]
18. Construction of chitosan-derived porous nest-like C/SnO Lu J; Wang Y; Wang L; Liu D; Zhou L; Wei C; Zhang X; Huang X; Wen G Int J Biol Macromol; 2024 Jan; 254(Pt 2):127851. PubMed ID: 37924920 [TBL] [Abstract][Full Text] [Related]
19. Thermal infrared and broadband microwave stealth glass windows based on multi-band optimization. Yang C; Niu S; Chang H; Wang Y; Feng Y; Zhang Y; Li G; Chen S; Qu Y; Xiao L Opt Express; 2021 Apr; 29(9):13610-13623. PubMed ID: 33985093 [TBL] [Abstract][Full Text] [Related]
20. A Microwave Field-Induced Nonlinear Metamaterial with Wafer Integration Level. Wu Z; Liu P; Lin M; Zha S; Ni X ACS Appl Mater Interfaces; 2023 Mar; 15(12):16189-16197. PubMed ID: 36921290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]