These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31993342)

  • 21. Do medicinal chemists learn from activity cliffs? A systematic evaluation of cliff progression in evolving compound data sets.
    Dimova D; Heikamp K; Stumpfe D; Bajorath J
    J Med Chem; 2013 Apr; 56(8):3339-45. PubMed ID: 23527828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activity cliff clusters as a source of structure-activity relationship information.
    Dimova D; Stumpfe D; Hu Y; Bajorath J
    Expert Opin Drug Discov; 2015 May; 10(5):441-7. PubMed ID: 25715967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring structure-promiscuity relationships using dual-site promiscuity cliffs and corresponding single-site analogs.
    Hu H; Bajorath J
    Bioorg Med Chem; 2020 Jan; 28(1):115238. PubMed ID: 31818631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation of activity cliffs is accompanied by systematic increases in ligand efficiency from lowly to highly potent compounds.
    de la Vega de León A; Bajorath J
    AAPS J; 2014 Mar; 16(2):335-41. PubMed ID: 24477941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extending the activity cliff concept: structural categorization of activity cliffs and systematic identification of different types of cliffs in the ChEMBL database.
    Hu Y; Bajorath J
    J Chem Inf Model; 2012 Jul; 52(7):1806-11. PubMed ID: 22758389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of individual compounds forming activity cliffs using emerging chemical patterns.
    Namasivayam V; Iyer P; Bajorath J
    J Chem Inf Model; 2013 Dec; 53(12):3131-9. PubMed ID: 24304008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extraction of SAR information from activity cliff clusters via matching molecular series.
    Dimova D; Bajorath J
    Eur J Med Chem; 2014 Nov; 87():454-60. PubMed ID: 25282268
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of activity cliffs on the basis of images using convolutional neural networks.
    Iqbal J; Vogt M; Bajorath J
    J Comput Aided Mol Des; 2021 Dec; 35(12):1157-1164. PubMed ID: 33740200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of Interaction Hot Spots in Structures of Drug Targets on the Basis of Three-Dimensional Activity Cliff Information.
    Furtmann N; Hu Y; Gütschow M; Bajorath J
    Chem Biol Drug Des; 2015 Dec; 86(6):1458-65. PubMed ID: 26094578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identifying Activity Cliff Generators of PPAR Ligands Using SAS Maps.
    Méndez-Lucio O; Pérez-Villanueva J; Castillo R; Medina-Franco JL
    Mol Inform; 2012 Dec; 31(11-12):837-46. PubMed ID: 27476737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of Activity Cliffs Using Condensed Graphs of Reaction Representations, Descriptor Recombination, Support Vector Machine Classification, and Support Vector Regression.
    Horvath D; Marcou G; Varnek A; Kayastha S; de la Vega de León A; Bajorath J
    J Chem Inf Model; 2016 Sep; 56(9):1631-40. PubMed ID: 27564682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comprehensive analysis of single- and multi-target activity cliffs formed by currently available bioactive compounds.
    Wassermann AM; Dimova D; Bajorath J
    Chem Biol Drug Des; 2011 Aug; 78(2):224-8. PubMed ID: 21624090
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemical landscape analysis with the OpenTox framework.
    Jeliazkova N; Jeliazkov V
    Curr Top Med Chem; 2012; 12(18):1987-2001. PubMed ID: 23110534
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Introduction of target cliffs as a concept to identify and describe complex molecular selectivity patterns.
    Hu Y; Bajorath J
    J Chem Inf Model; 2013 Mar; 53(3):545-52. PubMed ID: 23379346
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Frequency of occurrence and potency range distribution of activity cliffs in bioactive compounds.
    Stumpfe D; Bajorath J
    J Chem Inf Model; 2012 Sep; 52(9):2348-53. PubMed ID: 22866827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advancing the activity cliff concept, part II.
    Stumpfe D; de la Vega de León A; Dimova D; Bajorath J
    F1000Res; 2014; 3():75. PubMed ID: 24741442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of multitarget activity landscapes that capture hierarchical activity cliff distributions.
    Dimova D; Wawer M; Wassermann AM; Bajorath J
    J Chem Inf Model; 2011 Feb; 51(2):258-66. PubMed ID: 21275393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploration of 3D activity cliffs on the basis of compound binding modes and comparison of 2D and 3D cliffs.
    Hu Y; Bajorath J
    J Chem Inf Model; 2012 Mar; 52(3):670-7. PubMed ID: 22394306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of activity cliffs using support vector machines.
    Heikamp K; Hu X; Yan A; Bajorath J
    J Chem Inf Model; 2012 Sep; 52(9):2354-65. PubMed ID: 22894655
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From activity cliffs to activity ridges: informative data structures for SAR analysis.
    Vogt M; Huang Y; Bajorath J
    J Chem Inf Model; 2011 Aug; 51(8):1848-56. PubMed ID: 21761918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.