These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31993467)

  • 1. Data and analysis script for infant and adult eye movement in an adapted ocular-motor serial reaction time task assessing procedural memory.
    Koch FS; Sundqvist A; Thornberg UB; Ullman MT; Barr R; Rudner M; Heimann M
    Data Brief; 2020 Apr; 29():105108. PubMed ID: 31993467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Procedural memory in infancy: Evidence from implicit sequence learning in an eye-tracking paradigm.
    Koch FS; Sundqvist A; Thornberg UB; Nyberg S; Lum JAG; Ullman MT; Barr R; Rudner M; Heimann M
    J Exp Child Psychol; 2020 Mar; 191():104733. PubMed ID: 31805463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examining implicit procedural learning in tetraplegia using an oculomotor serial reaction time task.
    Bloch A; Shaham M; Vakil E; Schwizer Ashkenazi S; Zeilig G
    PLoS One; 2020; 15(4):e0232124. PubMed ID: 32324808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infant eye and head movements toward the side opposite the cue in the anti-saccade paradigm.
    Nakagawa A; Sukigara M
    Behav Brain Funct; 2007 Jan; 3():5. PubMed ID: 17229319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eye-Tracking Reveals Absent Repetition Learning Across the Autism Spectrum: Evidence From a Passive Viewing Task.
    Gaigg SB; Krug MK; Solomon M; Roestorf A; Derwent C; Anns S; Bowler DM; Rivera S; Nordahl CW; Jones EJH
    Autism Res; 2020 Nov; 13(11):1929-1946. PubMed ID: 32864896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual differences in implicit motor learning: task specificity in sensorimotor adaptation and sequence learning.
    Stark-Inbar A; Raza M; Taylor JA; Ivry RB
    J Neurophysiol; 2017 Jan; 117(1):412-428. PubMed ID: 27832611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for ocular motor deficits in developmental dyslexia: application of the double-step paradigm.
    Ram-Tsur R; Faust M; Caspi A; Gordon CR; Zivotofsky AZ
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4401-9. PubMed ID: 17003432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exercise Reduces Competition between Procedural and Declarative Memory Systems.
    Chen J; Roig M; Wright DL
    eNeuro; 2020; 7(4):. PubMed ID: 32616624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search.
    Thompson KG; Hanes DP; Bichot NP; Schall JD
    J Neurophysiol; 1996 Dec; 76(6):4040-55. PubMed ID: 8985899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A meta-analysis and meta-regression of serial reaction time task performance in Parkinson's disease.
    Clark GM; Lum JA; Ullman MT
    Neuropsychology; 2014 Nov; 28(6):945-58. PubMed ID: 25000326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gaze control during reaching is flexibly modulated to optimize task outcome.
    Abekawa N; Gomi H; Diedrichsen J
    J Neurophysiol; 2021 Sep; 126(3):816-826. PubMed ID: 34320845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The coordination of eye, head, and arm movements during rapid gaze orienting and arm pointing.
    Suzuki M; Izawa A; Takahashi K; Yamazaki Y
    Exp Brain Res; 2008 Feb; 184(4):579-85. PubMed ID: 18060545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The benefit of assessing implicit sequence learning in pianists with an eye-tracked serial reaction time task.
    Schwizer Ashkenazi S; Raiter-Avni R; Vakil E
    Psychol Res; 2022 Jul; 86(5):1426-1441. PubMed ID: 34468856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of working memory capacity in implicit and explicit sequence learning of children: Differentiating movement speed and accuracy.
    van Abswoude F; Buszard T; van der Kamp J; Steenbergen B
    Hum Mov Sci; 2020 Feb; 69():102556. PubMed ID: 31989949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enumeration strategy differences revealed by saccade-terminated eye tracking.
    Paul JM; Reeve RA; Forte JD
    Cognition; 2020 May; 198():104204. PubMed ID: 32014714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The "implicit" serial reaction time task induces rapid and temporary adaptation rather than implicit motor learning.
    Trofimova O; Mottaz A; Allaman L; Chauvigné LAS; Guggisberg AG
    Neurobiol Learn Mem; 2020 Nov; 175():107297. PubMed ID: 32822865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shortening and prolongation of saccade latencies following microsaccades.
    Rolfs M; Laubrock J; Kliegl R
    Exp Brain Res; 2006 Mar; 169(3):369-76. PubMed ID: 16328308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific Deficit in Implicit Motor Sequence Learning following Spinal Cord Injury.
    Bloch A; Tamir D; Vakil E; Zeilig G
    PLoS One; 2016; 11(6):e0158396. PubMed ID: 27355834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Later learning stages in procedural memory are impaired in children with Specific Language Impairment.
    Desmottes L; Meulemans T; Maillart C
    Res Dev Disabil; 2016 Jan; 48():53-68. PubMed ID: 26540297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity.
    Hanes DP; Patterson WF; Schall JD
    J Neurophysiol; 1998 Feb; 79(2):817-34. PubMed ID: 9463444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.