BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31993848)

  • 1. Enhancement of NADPH availability for coproduction of coenzyme Q
    Xu M; Wu H; Shen P; Jiang X; Chen X; Lin J; Huang J; Qi F
    J Ind Microbiol Biotechnol; 2020 Feb; 47(2):263-274. PubMed ID: 31993848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-production of farnesol and coenzyme Q
    Chen X; Jiang X; Xu M; Zhang M; Huang R; Huang J; Qi F
    Microb Cell Fact; 2019 May; 18(1):98. PubMed ID: 31151455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Reinforcement of Rhodobacter sphaeroides cofactor NADPH to increase the production of farnesol].
    Xu M; Jiang X; Huang J; Qi F
    Sheng Wu Gong Cheng Xue Bao; 2020 Jan; 36(1):90-99. PubMed ID: 32072784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and elimination of metabolic bottlenecks in the quinone modification pathway for enhanced coenzyme Q10 production in Rhodobacter sphaeroides.
    Lu W; Ye L; Lv X; Xie W; Gu J; Chen Z; Zhu Y; Li A; Yu H
    Metab Eng; 2015 May; 29():208-216. PubMed ID: 25817210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergic regulation of redox potential and oxygen uptake to enhance production of coenzyme Q
    Zhu Y; Ye L; Chen Z; Hu W; Shi Y; Chen J; Wang C; Li Y; Li W; Yu H
    Enzyme Microb Technol; 2017 Jun; 101():36-43. PubMed ID: 28433189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced production of coenzyme Q10 by self-regulating the engineered MEP pathway in Rhodobacter sphaeroides.
    Lu W; Ye L; Xu H; Xie W; Gu J; Yu H
    Biotechnol Bioeng; 2014 Apr; 111(4):761-9. PubMed ID: 24122603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic flux analysis of coenzyme Q
    Xiao Y; Zheng Y; Zhou Y; Yu C; Ye TE
    Microb Cell Fact; 2023 Oct; 22(1):206. PubMed ID: 37817171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenesis of Rhodobacter sphaeroides using atmospheric and room temperature plasma treatment for efficient production of coenzyme Q10.
    Zou RS; Li S; Zhang LL; Zhang C; Han YJ; Gao G; Sun X; Gong X
    J Biosci Bioeng; 2019 Jun; 127(6):698-702. PubMed ID: 30709705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Production of coenzyme Q10 by metabolically engineered Escherichia coli].
    Dai G; Miao L; Sun T; Li Q; Xiao D; Zhang X
    Sheng Wu Gong Cheng Xue Bao; 2015 Feb; 31(2):206-19. PubMed ID: 26062342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iterative mutagenesis induced by atmospheric and room temperature plasma treatment under multiple selection pressures for the improvement of coenzyme Q10 production by Rhodobacter sphaeroides.
    Wang Y; Chen S; Huo K; Wang B; Liu J; Zhao G; Liu J
    FEMS Microbiol Lett; 2022 Jan; 368(21-24):. PubMed ID: 34875071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve l-isoleucine production.
    Ma W; Wang J; Li Y; Hu X; Shi F; Wang X
    Biotechnol Appl Biochem; 2016 Nov; 63(6):877-885. PubMed ID: 27010514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic Redesign of Rhodobacter sphaeroides for Lycopene Production.
    Su A; Chi S; Li Y; Tan S; Qiang S; Chen Z; Meng Y
    J Agric Food Chem; 2018 Jun; 66(23):5879-5885. PubMed ID: 29806774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving CoQ
    Yang Y; Li L; Sun H; Li Z; Qi Z; Liu X
    Microb Cell Fact; 2021 Oct; 20(1):207. PubMed ID: 34717624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced CoQ10 production by genome modification of Rhodobacter sphaeroides via Tn7 transposition.
    Zhu Y; Pan M; Wang C; Ye L; Xia C; Yu H
    FEMS Microbiol Lett; 2022 Mar; 369(1):. PubMed ID: 35218188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coenzyme Q10 production in a 150-l reactor by a mutant strain of Rhodobacter sphaeroides.
    Kien NB; Kong IS; Lee MG; Kim JK
    J Ind Microbiol Biotechnol; 2010 May; 37(5):521-9. PubMed ID: 20195885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary coenzyme Q10 deficiency and oxidative stress in cultured fibroblasts from patients with riboflavin responsive multiple Acyl-CoA dehydrogenation deficiency.
    Cornelius N; Byron C; Hargreaves I; Guerra PF; Furdek AK; Land J; Radford WW; Frerman F; Corydon TJ; Gregersen N; Olsen RK
    Hum Mol Genet; 2013 Oct; 22(19):3819-27. PubMed ID: 23727839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of long-chain free fatty acids from metabolically engineered Rhodobacter sphaeroides heterologously producing periplasmic phospholipase A2 in dodecane-overlaid two-phase culture.
    Tong X; Oh EK; Lee BH; Lee JK
    Microb Cell Fact; 2019 Jan; 18(1):20. PubMed ID: 30704481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of enzymes in glycolysis and energy metabolic pathways to enhance coenzyme Q10 production in
    Zhang L; Li YL; Hu JH; Liu ZY
    Front Microbiol; 2022; 13():931470. PubMed ID: 36033867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing NADPH Availability for Xylitol Production via Pentose-Phosphate-Pathway Gene Overexpression and Embden-Meyerhof-Parnas-Pathway Gene Deletion in
    Yuan X; Mao Y; Tu S; Lin J; Shen H; Yang L; Wu M
    J Agric Food Chem; 2021 Aug; 69(33):9625-9631. PubMed ID: 34382797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coenzyme Q10 production by Rhodobacter sphaeroides in stirred tank and in airlift bioreactor.
    Yen HW; Shih TY
    Bioprocess Biosyst Eng; 2009 Oct; 32(6):711-6. PubMed ID: 19153771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.