These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31993949)

  • 1. Determining the Sites of Neural Adaptations to Resistance Training: A Systematic Review and Meta-analysis.
    Siddique U; Rahman S; Frazer AK; Pearce AJ; Howatson G; Kidgell DJ
    Sports Med; 2020 Jun; 50(6):1107-1128. PubMed ID: 31993949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurophysiological adaptations in the untrained side in conjunction with cross-education of muscle strength: a systematic review and meta-analysis.
    Manca A; Hortobágyi T; Rothwell J; Deriu F
    J Appl Physiol (1985); 2018 Jun; 124(6):1502-1518. PubMed ID: 29446711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining the early corticospinal-motoneuronal responses to strength training: a systematic review and meta-analysis.
    Mason J; Frazer AK; Pearce AJ; Goodwill AM; Howatson G; Jaberzadeh S; Kidgell DJ
    Rev Neurosci; 2019 Jul; 30(5):463-476. PubMed ID: 30864400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corticospinal properties following short-term strength training of an intrinsic hand muscle.
    Kidgell DJ; Pearce AJ
    Hum Mov Sci; 2010 Oct; 29(5):631-41. PubMed ID: 20400192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corticospinal responses following strength training: a systematic review and meta-analysis.
    Kidgell DJ; Bonanno DR; Frazer AK; Howatson G; Pearce AJ
    Eur J Neurosci; 2017 Dec; 46(11):2648-2661. PubMed ID: 28921683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sites of neural adaptation induced by resistance training in humans.
    Carroll TJ; Riek S; Carson RG
    J Physiol; 2002 Oct; 544(Pt 2):641-52. PubMed ID: 12381833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eight weeks of local vibration training increases dorsiflexor muscle cortical voluntary activation.
    Souron R; Farabet A; Féasson L; Belli A; Millet GY; Lapole T
    J Appl Physiol (1985); 2017 Jun; 122(6):1504-1515. PubMed ID: 28385918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical inhibition is reduced following short-term training in young and older adults.
    Christie A; Kamen G
    Age (Dordr); 2014 Apr; 36(2):749-58. PubMed ID: 23943112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anodal tDCS applied during strength training enhances motor cortical plasticity.
    Hendy AM; Kidgell DJ
    Med Sci Sports Exerc; 2013 Sep; 45(9):1721-9. PubMed ID: 23470308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced neural drive after maximal strength training in multiple sclerosis patients.
    Fimland MS; Helgerud J; Gruber M; Leivseth G; Hoff J
    Eur J Appl Physiol; 2010 Sep; 110(2):435-43. PubMed ID: 20512584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-interval cortical inhibition and corticomotor excitability with fatiguing hand exercise: a central adaptation to fatigue?
    Benwell NM; Sacco P; Hammond GR; Byrnes ML; Mastaglia FL; Thickbroom GW
    Exp Brain Res; 2006 Apr; 170(2):191-8. PubMed ID: 16328285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of endurance training on the maximal voluntary activation level of the knee extensor muscles.
    Zghal F; Martin V; Thorkani A; Arnal PJ; Tabka Z; Cottin F
    Eur J Appl Physiol; 2014 Apr; 114(4):683-93. PubMed ID: 24368553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contraction intensity-dependent variations in the responses to brain and corticospinal tract stimulation after a single session of resistance training in men.
    Colomer-Poveda D; Romero-Arenas S; Lundbye-Jensen J; Hortobágyi T; Márquez G
    J Appl Physiol (1985); 2019 Oct; 127(4):1128-1139. PubMed ID: 31436513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological processes influencing motor-evoked potential duration with voluntary contraction.
    van den Bos MA; Geevasinga N; Menon P; Burke D; Kiernan MC; Vucic S
    J Neurophysiol; 2017 Mar; 117(3):1156-1162. PubMed ID: 28031404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural adaptations in quadriceps muscle after 4 weeks of local vibration training in young versus older subjects.
    Souron R; Besson T; Lapole T; Millet GY
    Appl Physiol Nutr Metab; 2018 May; 43(5):427-436. PubMed ID: 29172028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter-repetition rest training and traditional set configuration produce similar strength gains without cortical adaptations.
    Iglesias-Soler E; Mayo X; Río-Rodríguez D; Carballeira E; Fariñas J; Fernández-Del-Olmo M
    J Sports Sci; 2016 Aug; 34(15):1473-84. PubMed ID: 26630355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced short-interval intracortical inhibition after eccentric muscle damage in human elbow flexor muscles.
    Pitman BM; Semmler JG
    J Appl Physiol (1985); 2012 Sep; 113(6):929-36. PubMed ID: 22837166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute Strength Training Increases Responses to Stimulation of Corticospinal Axons.
    Nuzzo JL; Barry BK; Gandevia SC; Taylor JL
    Med Sci Sports Exerc; 2016 Jan; 48(1):139-50. PubMed ID: 26258855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of short- and long-interval intracortical inhibition with increasing motor evoked potential amplitude in a human hand muscle.
    Opie GM; Semmler JG
    Clin Neurophysiol; 2014 Jul; 125(7):1440-50. PubMed ID: 24345316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of strength training on the force of twitches evoked by corticospinal stimulation in humans.
    Carroll TJ; Barton J; Hsu M; Lee M
    Acta Physiol (Oxf); 2009 Oct; 197(2):161-73. PubMed ID: 19392872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.