These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 31994362)

  • 41. Fluorescence lifetime imaging by time-correlated single-photon counting.
    Becker W; Bergmann A; Hink MA; König K; Benndorf K; Biskup C
    Microsc Res Tech; 2004 Jan; 63(1):58-66. PubMed ID: 14677134
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Implementation of a Coherent Anti-Stokes Raman Scattering (CARS) System on a Ti:Sapphire and OPO Laser Based Standard Laser Scanning Microscope.
    Mytskaniuk V; Bardin F; Boukhaddaoui H; Rigneault H; Tricaud N
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27501285
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High second harmonic generation signal from muscles and fascia pig's muscles using the two-photon laser scanning microscope.
    Reshak AH
    J Microsc; 2009 Jun; 234(3):280-6. PubMed ID: 19493106
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Scanless two-photon excitation with temporal focusing.
    Papagiakoumou E; Ronzitti E; Emiliani V
    Nat Methods; 2020 Jun; 17(6):571-581. PubMed ID: 32284609
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiphoton confocal microscopy using a femtosecond Cr:forsterite laser.
    Liu TM; Chu SW; Sun CK; Lin BL; Cheng PC; Johnson I
    Scanning; 2001; 23(4):249-54. PubMed ID: 11534811
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source.
    Tang S; Krasieva TB; Chen Z; Tromberg BJ
    J Biomed Opt; 2006; 11(2):020502. PubMed ID: 16674173
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spectral characteristics of autofluorescence and second harmonic generation from ex vivo human skin induced by femtosecond laser and visible lasers.
    Chen J; Zhuo S; Luo T; Jiang X; Zhao J
    Scanning; 2006; 28(6):319-26. PubMed ID: 17181133
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Miniaturized multiphoton microscope with a 24Hz frame-rate.
    Liu TM; Chan MC; Chen IH; Chia SH; Sun CK
    Opt Express; 2008 Jul; 16(14):10501-6. PubMed ID: 18607463
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Two-color two-photon excitation using femtosecond laser pulses.
    Quentmeier S; Denicke S; Ehlers JE; Niesner RA; Gericke KH
    J Phys Chem B; 2008 May; 112(18):5768-73. PubMed ID: 18407711
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two-photon excited fluorescence lifetime measurements through a double-clad photonic crystal fiber for tissue micro-endoscopy.
    Knorr F; Yankelevich DR; Liu J; Wachsmann-Hogiu S; Marcu L
    J Biophotonics; 2012 Jan; 5(1):14-9. PubMed ID: 22045513
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy.
    Carriles R; Schafer DN; Sheetz KE; Field JJ; Cisek R; Barzda V; Sylvester AW; Squier JA
    Rev Sci Instrum; 2009 Aug; 80(8):081101. PubMed ID: 19725639
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fringe-free, background-free, collinear third-harmonic generation frequency-resolved optical gating measurements for multiphoton microscopy.
    Chadwick R; Spahr E; Squier JA; Durfee CG; Walker BC; Fittinghoff DN
    Opt Lett; 2006 Nov; 31(22):3366-8. PubMed ID: 17072425
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single-photon-counting detector for increased sensitivity in two-photon laser scanning microscopy.
    Benninger RK; Ashby WJ; Ring EA; Piston DW
    Opt Lett; 2008 Dec; 33(24):2895-7. PubMed ID: 19079484
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adding new dimensions to laser-scanning fluorescence microscopy.
    De AK; Goswami D
    J Microsc; 2009 Feb; 233(2):320-5. PubMed ID: 19220698
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multispectral fluorescence lifetime imaging by TCSPC.
    Becker W; Bergmann A; Biskup C
    Microsc Res Tech; 2007 May; 70(5):403-9. PubMed ID: 17393532
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy.
    Eggeling C; Volkmer A; Seidel CA
    Chemphyschem; 2005 May; 6(5):791-804. PubMed ID: 15884061
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Advantages and risks of multiphoton microscopy in physiology.
    Tauer U
    Exp Physiol; 2002 Nov; 87(6):709-14. PubMed ID: 12530403
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Excitation beyond the monochromatic laser limit: simultaneous 3-D confocal and multiphoton microscopy with a tapered fiber as white-light laser source.
    Betz T; Teipel J; Koch D; Härtig W; Guck J; Käs J; Giessen H
    J Biomed Opt; 2005; 10(5):054009. PubMed ID: 16292969
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rapid pulse shaping with homodyne detection for measuring nonlinear optical signals.
    Piletic IR; Fischer MC; Samineni P; Yurtsever G; Warren WS
    Opt Lett; 2008 Jul; 33(13):1482-4. PubMed ID: 18594672
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Developing compact multiphoton systems using femtosecond fiber lasers.
    Tang S; Liu J; Krasieva TB; Chen Z; Tromberg BJ
    J Biomed Opt; 2009; 14(3):030508. PubMed ID: 19566289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.