These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31994378)

  • 1. Traveling Wave Rotary Micromotor Based on a Photomechanical Response in Liquid Crystal Polymer Networks.
    Dradrach K; Rogóż M; Grabowski P; Xuan C; Węgłowski R; Konieczkowska J; Schab-Balcerzak E; Piecek W; Wasylczyk P
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8681-8686. PubMed ID: 31994378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Photomechanical Film in which Liquid Crystal Design Shifts the Absorption into the Visible Light Range.
    Schultzke S; Scheuring N; Puylaert P; Lehmann M; Staubitz A
    Adv Sci (Weinh); 2023 Oct; 10(30):e2302692. PubMed ID: 37661584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniature bulk PZT traveling wave ultrasonic motors for low-speed high-torque rotary actuation.
    Hareesh P; DeVoe DL
    J Microelectromech Syst; 2018 Jun; 27(3):547-554. PubMed ID: 30505138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A finite volume method and experimental study of a stator of a piezoelectric traveling wave rotary ultrasonic motor.
    Bolborici V; Dawson FP; Pugh MC
    Ultrasonics; 2014 Mar; 54(3):809-20. PubMed ID: 24210273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel contact model of piezoelectric traveling wave rotary ultrasonic motors with the finite volume method.
    Renteria-Marquez IA; Renteria-Marquez A; Tseng BTL
    Ultrasonics; 2018 Nov; 90():5-17. PubMed ID: 29902664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photomechanics of liquid-crystalline elastomers and other polymers.
    Ikeda T; Mamiya J; Yu Y
    Angew Chem Int Ed Engl; 2007; 46(4):506-28. PubMed ID: 17212377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and performance analysis of a rotary traveling wave ultrasonic motor with double vibrators.
    Dong Z; Yang M; Chen Z; Xu L; Meng F; Ou W
    Ultrasonics; 2016 Sep; 71():134-141. PubMed ID: 27336793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanotube liquid crystal elastomers: photomechanical response and flexible energy conversion of layered polymer composites.
    Fan X; King BC; Loomis J; Campo EM; Hegseth J; Cohn RW; Terentjev E; Panchapakesan B
    Nanotechnology; 2014 Sep; 25(35):355501. PubMed ID: 25116197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A traveling wave ultrasonic motor of high torque.
    Chen Y; Liu QL; Zhou TY
    Ultrasonics; 2006 Dec; 44 Suppl 1():e581-4. PubMed ID: 16793077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroplasticization of Liquid Crystal Polymer Networks.
    van der Kooij HM; Broer DJ; Liu D; Sprakel J
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19927-19937. PubMed ID: 32267679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dynamic model of the piezoelectric traveling wave rotary ultrasonic motor stator with the finite volume method.
    Renteria Marquez IA; Bolborici V
    Ultrasonics; 2017 May; 77():69-78. PubMed ID: 28183069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-sustained actuation from heat dissipation in liquid crystal polymer networks.
    Vantomme G; Gelebart AH; Broer DJ; Meijer EW
    J Polym Sci A Polym Chem; 2018 Jul; 56(13):1331-1336. PubMed ID: 29937627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-regulated molecular diffusion in a liquid crystal network.
    Cao A; van Raak RJH; Broer DJ
    Soft Matter; 2019 Jun; 15(23):4737-4742. PubMed ID: 31140536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photomechanical effects based on a one-dimensional Zn coordination polymer crystal driven by [4 + 4] cycloaddition.
    Chen Y; Yu C; Zhu X; Yu Q
    Dalton Trans; 2023 Sep; 52(35):12194-12197. PubMed ID: 37606299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bidirectional photoresponse of surface pretreated azobenzene liquid crystal polymer networks.
    Hrozhyk U; Serak S; Tabiryan N; White TJ; Bunning TJ
    Opt Express; 2009 Jan; 17(2):716-22. PubMed ID: 19158885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topography from topology: photoinduced surface features generated in liquid crystal polymer networks.
    McConney ME; Martinez A; Tondiglia VP; Lee KM; Langley D; Smalyukh II; White TJ
    Adv Mater; 2013 Nov; 25(41):5880-5. PubMed ID: 23873775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Voltage High-Frequency Lamb-Wave-Driven Micromotors.
    Wang Z; Wei W; Zhang M; Duan X; Li Q; Chen X; Yang Q; Pang W
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemically Triggered Changes in Mechanical Properties of Responsive Liquid Crystal Polymer Networks with Immobilized Urease.
    Velasco Abadia A; Herbert KM; Matavulj VM; White TJ; Schwartz DK; Kaar JL
    J Am Chem Soc; 2021 Oct; 143(40):16740-16749. PubMed ID: 34590861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of three-dimensional traveling wave drive for a PZT thin-film micro-motor based on stiffness tuning of the supporting structure.
    Yang T; Cao B; Chen Y; Li X; He J; Su W
    Ultrasonics; 2023 Sep; 134():107066. PubMed ID: 37320967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Actuation and Patterning of Rewritable Crystalline Monomer-Polymer Heterostructures via Topochemical Polymerization in a Dual-Responsive Photochromic Organic Material.
    Samanta R; Kitagawa D; Mondal A; Bhattacharya M; Annadhasan M; Mondal S; Chandrasekar R; Kobatake S; Reddy CM
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16856-16863. PubMed ID: 32162514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.