These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31994387)

  • 1. Flow-Free Microfluidic Device for Quantifying Chemotaxis in Spermatozoa.
    Berendsen JTW; Kruit SA; Atak N; Willink E; Segerink LI
    Anal Chem; 2020 Feb; 92(4):3302-3306. PubMed ID: 31994387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of Gradients on a Microfluidic Device: Toward a High-Throughput Investigation of Spermatozoa Chemotaxis.
    Zhang Y; Xiao RR; Yin T; Zou W; Tang Y; Ding J; Yang J
    PLoS One; 2015; 10(11):e0142555. PubMed ID: 26555941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virus removal from semen with a pinched flow fractionation microfluidic chip.
    Hamacher T; Berendsen JTW; van Dongen JE; van der Hee RM; Cornelissen JJLM; Broekhuijse MLWJ; Segerink LI
    Lab Chip; 2021 Nov; 21(22):4477-4486. PubMed ID: 34664598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fully integrated biomimetic microfluidic device for evaluation of sperm response to thermotaxis and chemotaxis.
    Yan Y; Zhang B; Fu Q; Wu J; Liu R
    Lab Chip; 2021 Jan; 21(2):310-318. PubMed ID: 33444427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of microfluidic devices in studies of differential sperm chemotaxis.
    Penny JA; Lymbery RA; Evans JP; Sherman CDH; Conlan XA
    Trends Biotechnol; 2022 Oct; 40(10):1144-1147. PubMed ID: 35902284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, Fabrication, and Testing of a Microfluidic Device for Thermotaxis and Chemotaxis Assays of Sperm.
    Ko YJ; Maeng JH; Hwang SY; Ahn Y
    SLAS Technol; 2018 Dec; 23(6):507-515. PubMed ID: 29949396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human sperm pattern of movement during chemotactic re-orientation towards a progesterone source.
    Blengini CS; Teves ME; Uñates DR; Guidobaldi HA; Gatica LV; Giojalas LC
    Asian J Androl; 2011 Sep; 13(5):769-73. PubMed ID: 21765441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of motile sperm for in vitro fertilization from frozen-thawed bull semen using progesterone induction on a microchip.
    Li J; Ning B; Cao X; Luo Y; Guo L; Wei G; Liu S; Zhang Y; Zhang A; Wu R; Li Y
    Anim Reprod Sci; 2016 Sep; 172():52-9. PubMed ID: 27452154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Flow-free Gradient Generator Using a Self-Adhesive Thiol-acrylate Microfluidic Resin/Hydrogel (TAMR/H) Hybrid System.
    Khan AH; Smith NM; Tullier MP; Roberts BS; Englert D; Pojman JA; Melvin AT
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):26735-26747. PubMed ID: 34081856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic sorting selects sperm for clinical use with reduced DNA damage compared to density gradient centrifugation with swim-up in split semen samples.
    Quinn MM; Jalalian L; Ribeiro S; Ona K; Demirci U; Cedars MI; Rosen MP
    Hum Reprod; 2018 Aug; 33(8):1388-1393. PubMed ID: 30007319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of Chemotaxis and Cell-Cell Interactions in Cancer with Microfluidic Devices.
    Sai J; Rogers M; Hockemeyer K; Wikswo JP; Richmond A
    Methods Enzymol; 2016; 570():19-45. PubMed ID: 26921940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photo-crosslinkable hydrogel-based 3D microfluidic culture device.
    Lee Y; Lee JM; Bae PK; Chung IY; Chung BH; Chung BG
    Electrophoresis; 2015 Apr; 36(7-8):994-1001. PubMed ID: 25641332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motility and fertility of alginate encapsulated boar spermatozoa.
    Huang SY; Tu CF; Liu SH; Kuo YH
    Anim Reprod Sci; 2005 Jun; 87(1-2):111-20. PubMed ID: 15885444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A radial microfluidic platform for higher throughput chemotaxis studies with individual gradient control.
    Wu J; Kumar-Kanojia A; Hombach-Klonisch S; Klonisch T; Lin F
    Lab Chip; 2018 Dec; 18(24):3855-3864. PubMed ID: 30427358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Static Microfluidic Device for Investigating the Chemotaxis Response to Stable, Non-linear Gradients.
    Sule N; Penarete-Acosta D; Englert DL; Jayaraman A
    Methods Mol Biol; 2018; 1729():47-59. PubMed ID: 29429081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemotaxis assays of mouse sperm on microfluidic devices.
    Koyama S; Amarie D; Soini HA; Novotny MV; Jacobson SC
    Anal Chem; 2006 May; 78(10):3354-9. PubMed ID: 16689537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of progressive motile sperm from mouse semen using on-chip chemotaxis.
    Ko YJ; Maeng JH; Lee BC; Lee S; Hwang SY; Ahn Y
    Anal Sci; 2012; 28(1):27-32. PubMed ID: 22232220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemotactic responsiveness of human spermatozoa to follicular fluid is enhanced by capacitation but is impaired in dyspermic semen.
    Tacconis P; Revelli A; Massobrio M; Battista La Sala G; Tesarik J
    J Assist Reprod Genet; 2001 Jan; 18(1):36-44. PubMed ID: 11292995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplexed end-point microfluidic chemotaxis assay using centrifugal alignment.
    Satti S; Deng P; Matthews K; Duffy SP; Ma H
    Lab Chip; 2020 Aug; 20(17):3096-3103. PubMed ID: 32748936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of dietary selenium and vitamin E on the ultrastructure and ATP concentration of boar spermatozoa, and the efficacy of added sodium selenite in extended semen on sperm motility.
    Marin-Guzman J; Mahan DC; Whitmoyer R
    J Anim Sci; 2000 Jun; 78(6):1544-50. PubMed ID: 10875637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.