BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 31994580)

  • 1. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material.
    Mou N; Liu X; Wei T; Dong H; He Q; Zhou L; Zhang Y; Zhang L; Sun S
    Nanoscale; 2020 Mar; 12(9):5374-5379. PubMed ID: 31994580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active-Tuning and Polarization-Independent Absorber and Sensor in the Infrared Region Based on the Phase Change Material of Ge
    Guo Z; Yang X; Shen F; Zhou Q; Gao J; Guo K
    Sci Rep; 2018 Aug; 8(1):12433. PubMed ID: 30127365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of Thermally Tunable Multi-Band and Ultra-Broadband Metamaterial Absorbers Maintaining High Efficiency during Tuning Process.
    Mou N; Tang B; Li J; Zhang Y; Dong H; Zhang L
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies.
    Cao T; Wei CW; Simpson RE; Zhang L; Cryan MJ
    Sci Rep; 2014 Feb; 4():3955. PubMed ID: 24492415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region.
    Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H
    Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-field imaging of the multi-resonant mode induced broadband tunable metamaterial absorber.
    Chen L; Sun L; Dong H; Mou N; Zhang Y; Li Q; Jiang X; Zhang L
    RSC Adv; 2020 Jan; 10(9):5146-5151. PubMed ID: 35498277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable broadband, wide-angle, and polarization-dependent perfect infrared absorber based on planar structure containing phase-change material.
    Wang X; Ding W; Zhu H; Liu C; Liu Y
    Appl Opt; 2018 Oct; 57(30):8915-8920. PubMed ID: 30461873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-broadband metamaterial absorber from ultraviolet to long-wave infrared based on CMOS-compatible materials.
    Yue S; Hou M; Wang R; Guo H; Hou Y; Li M; Zhang Z; Wang Y; Zhang Z
    Opt Express; 2020 Oct; 28(21):31844-31861. PubMed ID: 33115149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nickel-Based High-Bandwidth Nanostructured Metamaterial Absorber for Visible and Infrared Spectrum.
    Bilal RMH; Saeed MA; Naveed MA; Zubair M; Mehmood MQ; Massoud Y
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse design of metamaterial absorbers based on an equivalent circuit.
    Wang Y; Xuan X; Wu S; Zhu L; Zhu J; Shen X; Zhang Z; Hu C
    Phys Chem Chem Phys; 2022 Aug; 24(34):20390-20399. PubMed ID: 35983852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-Area, Cost-Effective, Ultra-Broadband Perfect Absorber Utilizing Manganese in Metal-Insulator-Metal Structure.
    Aalizadeh M; Khavasi A; Butun B; Ozbay E
    Sci Rep; 2018 Jun; 8(1):9162. PubMed ID: 29907773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linearly thermal-tunable near-infrared ultra-narrowband metamaterial perfect absorber with low power and a large modulation depth based on a four-nanorod-coupled a-silicon resonator.
    Zhao L; Yang X; Niu Q; He Z; Dong S
    Opt Lett; 2019 Aug; 44(15):3885-3888. PubMed ID: 31368993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarization Independent Metamaterial Absorber with Anti-Reflection Coating Nanoarchitectonics for Visible and Infrared Window Applications.
    Musa A; Hakim ML; Alam T; Islam MT; Alshammari AS; Mat K; M MS; Almalki SHA; Islam MS
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Parametric Analysis of a Wide-Angle and Polarization Insensitive Ultra-Broadband Metamaterial Absorber for Visible Optical Wavelength Applications.
    Chowdhury MZB; Islam MT; Hoque A; Alshammari AS; Alzamil A; Alsaif H; Alshammari BM; Hossain I; Samsuzzaman M
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reconfigurable hyperbolic metamaterial perfect absorber.
    Behera JK; Liu K; Lian M; Cao T
    Nanoscale Adv; 2021 Mar; 3(6):1758-1766. PubMed ID: 36132556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-Broadband Perfect Absorber based on Titanium Nanoarrays for Harvesting Solar Energy.
    Song D; Zhang K; Qian M; Liu Y; Wu X; Yu K
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband light absorption of an Al semishell-MIM nanostrucure in the UV to near-infrared regions.
    Matsumori K; Fujimura R
    Opt Lett; 2018 Jun; 43(12):2981-2984. PubMed ID: 29905739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths.
    Nguyen DM; Lee D; Rho J
    Sci Rep; 2017 Jun; 7(1):2611. PubMed ID: 28572672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perfect metamaterial absorber with high fractional bandwidth for solar energy harvesting.
    Hossain MJ; Faruque MRI; Islam MT
    PLoS One; 2018; 13(11):e0207314. PubMed ID: 30419057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.