These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Mechanism of GlvA from Bacillus subtilis: a detailed kinetic analysis of a 6-phospho-alpha-glucosidase from glycoside hydrolase family 4. Yip VL; Thompson J; Withers SG Biochemistry; 2007 Aug; 46(34):9840-52. PubMed ID: 17676871 [TBL] [Abstract][Full Text] [Related]
9. Structural Snapshots for Mechanism-Based Inactivation of a Glycoside Hydrolase by Cyclopropyl Carbasugars. Adamson C; Pengelly RJ; Shamsi Kazem Abadi S; Chakladar S; Draper J; Britton R; Gloster TM; Bennet AJ Angew Chem Int Ed Engl; 2016 Nov; 55(48):14978-14982. PubMed ID: 27783466 [TBL] [Abstract][Full Text] [Related]
10. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase. Hong SB; Raushel FM Biochemistry; 1996 Aug; 35(33):10904-12. PubMed ID: 8718883 [TBL] [Abstract][Full Text] [Related]
11. Development of Tunable Mechanism-Based Carbasugar Ligands that Stabilize Glycoside Hydrolases through the Formation of Transient Covalent Intermediates. Bhosale S; Kandalkar S; Gilormini PA; Akintola O; Rowland R; Adabala PJP; King D; Deen MC; Chen X; Davies GJ; Vocadlo DJ; Bennet AJ ACS Catal; 2024 Oct; 14(19):14769-14779. PubMed ID: 39386917 [TBL] [Abstract][Full Text] [Related]
12. Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases. Majzlová K; Pukajová Z; Janeček S Carbohydr Res; 2013 Feb; 367():48-57. PubMed ID: 23313816 [TBL] [Abstract][Full Text] [Related]
13. Structural basis of catalysis and substrate recognition by the NAD(H)-dependent α-d-glucuronidase from the glycoside hydrolase family 4. Mohapatra SB; Manoj N Biochem J; 2021 Feb; 478(4):943-959. PubMed ID: 33565573 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of α-1,4-glucan lyase, a unique glycoside hydrolase family member with a novel catalytic mechanism. Rozeboom HJ; Yu S; Madrid S; Kalk KH; Zhang R; Dijkstra BW J Biol Chem; 2013 Sep; 288(37):26764-74. PubMed ID: 23902768 [TBL] [Abstract][Full Text] [Related]
15. Structural analysis of the α-glucosidase HaG provides new insights into substrate specificity and catalytic mechanism. Shen X; Saburi W; Gai Z; Kato K; Ojima-Kato T; Yu J; Komoda K; Kido Y; Matsui H; Mori H; Yao M Acta Crystallogr D Biol Crystallogr; 2015 Jun; 71(Pt 6):1382-91. PubMed ID: 26057678 [TBL] [Abstract][Full Text] [Related]
16. Comparison of lipases and glycoside hydrolases as catalysts in synthesis reactions. Adlercreutz P Appl Microbiol Biotechnol; 2017 Jan; 101(2):513-519. PubMed ID: 27995311 [TBL] [Abstract][Full Text] [Related]
17. Mutation of a pH-modulating residue in a GH51 α-l-arabinofuranosidase leads to a severe reduction of the secondary hydrolysis of transfuranosylation products. Bissaro B; Saurel O; Arab-Jaziri F; Saulnier L; Milon A; Tenkanen M; Monsan P; O'Donohue MJ; Fauré R Biochim Biophys Acta; 2014 Jan; 1840(1):626-36. PubMed ID: 24140392 [TBL] [Abstract][Full Text] [Related]
18. Structurally homologous sialidases exhibit a commonality in reactivity: Glycoside hydrolase-catalyzed hydrolysis of Kdn-thioglycosides. Nejatie A; Akintola O; Steves E; Shamsi Kazem Abadi S; Moore MM; Bennet AJ Bioorg Chem; 2021 Jan; 106():104484. PubMed ID: 33268005 [TBL] [Abstract][Full Text] [Related]
19. Genetic and biochemical characterization of an oligo-α-1,6-glucosidase from Lactobacillus plantarum. Delgado S; Flórez AB; Guadamuro L; Mayo B Int J Food Microbiol; 2017 Apr; 246():32-39. PubMed ID: 28187329 [TBL] [Abstract][Full Text] [Related]
20. [Kinetic-thermodynamic aspects of catalysis of polysaccharides by native end immobilized amylases]. Kovaleva TA Biofizika; 2000; 45(3):439-44. PubMed ID: 10872055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]