These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 31995281)

  • 21. Coordination compounds in lithium storage and lithium-ion transport.
    Liu J; Xie D; Shi W; Cheng P
    Chem Soc Rev; 2020 Mar; 49(6):1624-1642. PubMed ID: 32096508
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Post-Lithium-Ion Battery Era: Recent Advances in Rechargeable Potassium-Ion Batteries.
    Wang B; Ang EH; Yang Y; Zhang Y; Ye M; Liu Q; Li CC
    Chemistry; 2021 Jan; 27(2):512-536. PubMed ID: 32510710
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent Developments on Electroactive Organic Electrolytes for Non-Aqueous Redox Flow Batteries: Current Status, Challenges, and Prospects.
    Mansha M; Anam A; Akram Khan S; Saeed Alzahrani A; Khan M; Ahmad A; Arshad M; Ali S
    Chem Rec; 2024 Jan; 24(1):e202300233. PubMed ID: 37695078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Material Design of Aqueous Redox Flow Batteries: Fundamental Challenges and Mitigation Strategies.
    Li Z; Lu YC
    Adv Mater; 2020 Nov; 32(47):e2002132. PubMed ID: 33094532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanohybrid electrolytes for high-energy lithium-ion batteries: recent advances and future challenges.
    Shi Y; Tan D; Li M; Chen Z
    Nanotechnology; 2019 Jul; 30(30):302002. PubMed ID: 30870822
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Eco-friendly Energy Storage System: Seawater and Ionic Liquid Electrolyte.
    Kim JK; Mueller F; Kim H; Jeong S; Park JS; Passerini S; Kim Y
    ChemSusChem; 2016 Jan; 9(1):42-9. PubMed ID: 26611916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.
    Zhao Y; Ding Y; Li Y; Peng L; Byon HR; Goodenough JB; Yu G
    Chem Soc Rev; 2015 Nov; 44(22):7968-96. PubMed ID: 26265165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Aluminum-Ion Battery: A Sustainable and Seminal Concept?
    Leisegang T; Meutzner F; Zschornak M; Münchgesang W; Schmid R; Nestler T; Eremin RA; Kabanov AA; Blatov VA; Meyer DC
    Front Chem; 2019; 7():268. PubMed ID: 31119122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity.
    Liu Y; Zhou G; Liu K; Cui Y
    Acc Chem Res; 2017 Dec; 50(12):2895-2905. PubMed ID: 29206446
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries.
    Lee S; Kwon G; Ku K; Yoon K; Jung SK; Lim HD; Kang K
    Adv Mater; 2018 Oct; 30(42):e1704682. PubMed ID: 29582467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Halide-Based Materials and Chemistry for Rechargeable Batteries.
    Zhao X; Zhao-Karger Z; Fichtner M; Shen X
    Angew Chem Int Ed Engl; 2020 Apr; 59(15):5902-5949. PubMed ID: 31359549
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Development of Mg Ion Solid Electrolyte.
    Zhan Y; Zhang W; Lei B; Liu H; Li W
    Front Chem; 2020; 8():125. PubMed ID: 32158746
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microemulsions: Breakthrough Electrolytes for Redox Flow Batteries.
    Barth BA; Imel A; Nelms KM; Goenaga GA; Zawodzinski T
    Front Chem; 2022; 10():831200. PubMed ID: 35308789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion.
    Huang J; Dong X; Guo Z; Wang Y
    Angew Chem Int Ed Engl; 2020 Oct; 59(42):18322-18333. PubMed ID: 32329546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries.
    Zhao Q; Zhu Z; Chen J
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28370809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises.
    Nayak PK; Yang L; Brehm W; Adelhelm P
    Angew Chem Int Ed Engl; 2018 Jan; 57(1):102-120. PubMed ID: 28627780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent Progress in Organic-Inorganic Composite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhang D; Xu X; Qin Y; Ji S; Huo Y; Wang Z; Liu Z; Shen J; Liu J
    Chemistry; 2020 Feb; 26(8):1720-1736. PubMed ID: 31631424
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorine and Lithium: Ideal Partners for High-Performance Rechargeable Battery Electrolytes.
    von Aspern N; Röschenthaler GV; Winter M; Cekic-Laskovic I
    Angew Chem Int Ed Engl; 2019 Nov; 58(45):15978-16000. PubMed ID: 31339214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries.
    Wang C; Fu K; Kammampata SP; McOwen DW; Samson AJ; Zhang L; Hitz GT; Nolan AM; Wachsman ED; Mo Y; Thangadurai V; Hu L
    Chem Rev; 2020 May; 120(10):4257-4300. PubMed ID: 32271022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Organic Electrolytes Recycling From Spent Lithium-Ion Batteries.
    Zhang R; Shi X; Esan OC; An L
    Glob Chall; 2022 Dec; 6(12):2200050. PubMed ID: 36532239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.