These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31995388)

  • 41. Mediated Interactions and Photon Bound States in an Exciton-Polariton Mixture.
    Camacho-Guardian A; Bastarrachea-Magnani MA; Bruun GM
    Phys Rev Lett; 2021 Jan; 126(1):017401. PubMed ID: 33480782
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Retracted Article: Physics of excitons and their transport in two dimensional transition metal dichalcogenide semiconductors.
    Kaviraj B; Sahoo D
    RSC Adv; 2019 Aug; 9(44):25439-25461. PubMed ID: 35530097
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Observation of Excitonic Rydberg States in Monolayer MoS2 and WS2 by Photoluminescence Excitation Spectroscopy.
    Hill HM; Rigosi AF; Roquelet C; Chernikov A; Berkelbach TC; Reichman DR; Hybertsen MS; Brus LE; Heinz TF
    Nano Lett; 2015 May; 15(5):2992-7. PubMed ID: 25816155
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polariton hyperspectral imaging of two-dimensional semiconductor crystals.
    Gebhardt C; Förg M; Yamaguchi H; Bilgin I; Mohite AD; Gies C; Florian M; Hartmann M; Hänsch TW; Högele A; Hunger D
    Sci Rep; 2019 Sep; 9(1):13756. PubMed ID: 31551486
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets.
    Zhao W; Ribeiro RM; Eda G
    Acc Chem Res; 2015 Jan; 48(1):91-9. PubMed ID: 25515381
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photonic-crystal exciton-polaritons in monolayer semiconductors.
    Zhang L; Gogna R; Burg W; Tutuc E; Deng H
    Nat Commun; 2018 Feb; 9(1):713. PubMed ID: 29459736
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanophotonics with 2D transition metal dichalcogenides [Invited].
    Krasnok A; Lepeshov S; Alú A
    Opt Express; 2018 Jun; 26(12):15972-15994. PubMed ID: 30114850
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nonlinear Quantum Optics with Trion Polaritons in 2D Monolayers: Conventional and Unconventional Photon Blockade.
    Kyriienko O; Krizhanovskii DN; Shelykh IA
    Phys Rev Lett; 2020 Nov; 125(19):197402. PubMed ID: 33216594
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self-Hybridized Exciton-Polaritons in Sub-10-nm-Thick WS
    Nguyen AT; Kwon S; Song J; Cho E; Kim H; Kim DW
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889612
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Valley polarization of exciton-polaritons in monolayer WSe
    Król M; Lekenta K; Mirek R; Łempicka K; Stephan D; Nogajewski K; Molas MR; Babiński A; Potemski M; Szczytko J; Piętka B
    Nanoscale; 2019 May; 11(19):9574-9579. PubMed ID: 31062800
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microsecond Valley Lifetime of Defect-Bound Excitons in Monolayer WSe_{2}.
    Moody G; Tran K; Lu X; Autry T; Fraser JM; Mirin RP; Yang L; Li X; Silverman KL
    Phys Rev Lett; 2018 Aug; 121(5):057403. PubMed ID: 30118275
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent Progress of Strong Exciton-Photon Coupling in Lead Halide Perovskites.
    Du W; Zhang S; Zhang Q; Liu X
    Adv Mater; 2019 Nov; 31(45):e1804894. PubMed ID: 30398690
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optical switching of topological phase in a perovskite polariton lattice.
    Su R; Ghosh S; Liew TCH; Xiong Q
    Sci Adv; 2021 May; 7(21):. PubMed ID: 34020955
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photonic architectures for equilibrium high-temperature Bose-Einstein condensation in dichalcogenide monolayers.
    Jiang JH; John S
    Sci Rep; 2014 Dec; 4():7432. PubMed ID: 25503586
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polariton lasing vs. photon lasing in a semiconductor microcavity.
    Deng H; Weihs G; Snoke D; Bloch J; Yamamoto Y
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15318-23. PubMed ID: 14673089
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Study on photoelectric characteristics of monolayer WS
    Wang L; Wang W; Wang Q; Chi X; Kang Z; Zhou Q; Pan L; Zhang H; Wang Y
    RSC Adv; 2019 Nov; 9(64):37195-37200. PubMed ID: 35542289
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polariton Dynamics in Two-Dimensional Ruddlesden-Popper Perovskites Strongly Coupled with Plasmonic Lattices.
    Park JE; López-Arteaga R; Sample AD; Cherqui CR; Spanopoulos I; Guan J; Kanatzidis MG; Schatz GC; Weiss EA; Odom TW
    ACS Nano; 2022 Mar; 16(3):3917-3925. PubMed ID: 35235746
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Visualising Berry phase and diabolical points in a quantum exciton-polariton billiard.
    Estrecho E; Gao T; Brodbeck S; Kamp M; Schneider C; Höfling S; Truscott AG; Ostrovskaya EA
    Sci Rep; 2016 Nov; 6():37653. PubMed ID: 27886222
    [TBL] [Abstract][Full Text] [Related]  

  • 59. All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires.
    Feng J; Wang J; Fieramosca A; Bao R; Zhao J; Su R; Peng Y; Liew TCH; Sanvitto D; Xiong Q
    Sci Adv; 2021 Nov; 7(46):eabj6627. PubMed ID: 34757800
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Collective Strong Light-Matter Coupling in Hierarchical Microcavity-Plasmon-Exciton Systems.
    Bisht A; Cuadra J; Wersäll M; Canales A; Antosiewicz TJ; Shegai T
    Nano Lett; 2019 Jan; 19(1):189-196. PubMed ID: 30500202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.