BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31995500)

  • 1. Caring About the Human Operator: Haptic Shared Control for Enhanced User Comfort in Robotic Telemanipulation.
    Rahal R; Matarese G; Gabiccini M; Artoni A; Prattichizzo D; Giordano PR; Pacchierotti C
    IEEE Trans Haptics; 2020; 13(1):197-203. PubMed ID: 31995500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haptic-Guided Teleoperation of a 7-DoF Collaborative Robot Arm With an Identical Twin Master.
    Singh J; Srinivasan AR; Neumann G; Kucukyilmaz A
    IEEE Trans Haptics; 2020; 13(1):246-252. PubMed ID: 32012028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Haptic Shared-Control Architecture for Guided Multi-Target Robotic Grasping.
    Abi-Farraj F; Pacchierotti C; Arenz O; Neumann G; Giordano PR
    IEEE Trans Haptics; 2020; 13(2):270-285. PubMed ID: 31034421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haptic Teleoperation of UAVs Through Control Barrier Functions.
    Zhang D; Yang G; Khurshid RP
    IEEE Trans Haptics; 2020; 13(1):109-115. PubMed ID: 31940555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Task performance evaluation of asymmetric semiautonomous teleoperation of mobile twin-arm robotic manipulators.
    Malysz P; Sirouspour S
    IEEE Trans Haptics; 2013; 6(4):484-95. PubMed ID: 24808400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Haptic and Visual Feedback Assistance for Dual-Arm Robot Teleoperation in Surface Conditioning Tasks.
    Girbes-Juan V; Schettino V; Demiris Y; Tornero J
    IEEE Trans Haptics; 2021; 14(1):44-56. PubMed ID: 32746376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ergonomic comfort workspace analysis of master manipulator for robotic laparoscopic surgery with motion scaled teleoperation system.
    Kang D; Kwon DS
    Int J Med Robot; 2022 Dec; 18(6):e2448. PubMed ID: 35986717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haptic Augmentation for Teleoperation through Virtual Grasping Points.
    Panzirsch M; Balachandran R; Weber B; Ferre M; Artigas J
    IEEE Trans Haptics; 2018; 11(3):400-416. PubMed ID: 29994289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A task-specific analysis of the benefit of haptic shared control during telemanipulation.
    Boessenkool H; Abbink DA; Heemskerk CJ; van der Helm FC; Wildenbeest JG
    IEEE Trans Haptics; 2013; 6(1):2-12. PubMed ID: 24808263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the Effectiveness of a Wearable Haptic Interface With Cutaneous and Vibrotactile Feedback for VR-Based Teleoperation.
    Trinitatova D; Tsetserukou D
    IEEE Trans Haptics; 2023; 16(4):463-469. PubMed ID: 37037227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Telepresence augmentation for visual and haptic guided immersive teleoperation of industrial manipulator.
    Huang F; Yang X; Yan T; Chen Z
    ISA Trans; 2024 Jul; 150():262-277. PubMed ID: 38749885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining Haptic and Bang-Bang Braking Actions for Passive Robotic Walker Path Following.
    Andreetto M; Divan S; Ferrari F; Fontanelli D; Palopoli L; Prattichizzo D
    IEEE Trans Haptics; 2019; 12(4):542-553. PubMed ID: 31034420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A meta-analysis of the effects of haptic interfaces on task performance with teleoperation systems.
    Nitsch V; Färber B
    IEEE Trans Haptics; 2013; 6(4):387-98. PubMed ID: 24808391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of haptic feedback quality on the performance of teleoperated assembly tasks.
    Wildenbeest JG; Abbink DA; Heemskerk CJ; van der Helm FC; Boessenkool H
    IEEE Trans Haptics; 2013; 6(2):242-52. PubMed ID: 24808307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Haptic Feedback Perception and Learning With Cable-Driven Guidance in Exosuit Teleoperation of a Simulated Drone.
    Rognon C; Ramachandran V; Wu AR; Ijspeert AJ; Floreano D
    IEEE Trans Haptics; 2019; 12(3):375-385. PubMed ID: 31251196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time haptic-teleoperated robotic system for motor control analysis.
    Shull PB; Gonzalez RV
    J Neurosci Methods; 2006 Mar; 151(2):194-9. PubMed ID: 16153712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of haptic feedback for the integration of intentions in shared task execution.
    Groten R; Feth D; Klatzky RL; Peer A
    IEEE Trans Haptics; 2013; 6(1):94-105. PubMed ID: 24808271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Skin Deformation Tactile Feedback for Teleoperated Surgical Tasks.
    Quek ZF; Provancher WR; Okamura AM
    IEEE Trans Haptics; 2019; 12(2):102-113. PubMed ID: 30281480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.