These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31995540)

  • 1. Superlubricity between a silicon tip and graphite enabled by the nanolithography-assisted nanoflakes tribo-transfer.
    Sha TD; Pang H; Fang L; Liu HX; Chen XC; Liu DM; Luo JB
    Nanotechnology; 2020 May; 31(20):205703. PubMed ID: 31995540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superlubricity of Graphite Sliding against Graphene Nanoflake under Ultrahigh Contact Pressure.
    Li J; Li J; Luo J
    Adv Sci (Weinh); 2018 Nov; 5(11):1800810. PubMed ID: 30479926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superlubricity of Graphite Induced by Multiple Transferred Graphene Nanoflakes.
    Li J; Gao T; Luo J
    Adv Sci (Weinh); 2018 Mar; 5(3):1700616. PubMed ID: 29593965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superlubricity between Graphite Layers in Ultrahigh Vacuum.
    Liu Y; Wang K; Xu Q; Zhang J; Hu Y; Ma T; Zheng Q; Luo J
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):43167-43172. PubMed ID: 32840104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tribo-Induced Interfacial Material Transfer of an Atomic Force Microscopy Probe Assisting Superlubricity in a WS
    Tian J; Yin X; Li J; Qi W; Huang P; Chen X; Luo J
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):4031-4040. PubMed ID: 31889443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sliding Friction and Superlubricity of Colloidal AFM Probes Coated by Tribo-Induced Graphitic Transfer Layers.
    Buzio R; Gerbi A; Bernini C; Repetto L; Vanossi A
    Langmuir; 2022 Oct; 38(41):12570-12580. PubMed ID: 36190908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interlayer Friction and Superlubricity in Single-Crystalline Contact Enabled by Two-Dimensional Flake-Wrapped Atomic Force Microscope Tips.
    Liu Y; Song A; Xu Z; Zong R; Zhang J; Yang W; Wang R; Hu Y; Luo J; Ma T
    ACS Nano; 2018 Aug; 12(8):7638-7646. PubMed ID: 30060665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superlubricity of graphite.
    Dienwiebel M; Verhoeven GS; Pradeep N; Frenken JW; Heimberg JA; Zandbergen HW
    Phys Rev Lett; 2004 Mar; 92(12):126101. PubMed ID: 15089689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere.
    Liu SW; Wang HP; Xu Q; Ma TB; Yu G; Zhang C; Geng D; Yu Z; Zhang S; Wang W; Hu YZ; Wang H; Luo J
    Nat Commun; 2017 Feb; 8():14029. PubMed ID: 28195130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limitations of Structural Superlubricity: Chemical Bonds versus Contact Size.
    Dietzel D; Brndiar J; Štich I; Schirmeisen A
    ACS Nano; 2017 Aug; 11(8):7642-7647. PubMed ID: 28715171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomistic simulations of the load dependant friction force between silicon tip and diamond substrate.
    Bu H; Chen Y
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7501-5. PubMed ID: 21137969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight Into the Superlubricity and Self-Assembly of Liquid Crystals.
    Tan S; Tao J; Luo W; Shi H; Tu B; Jiang H; Liu Y; Xu H; Zeng Q
    Front Chem; 2021; 9():668794. PubMed ID: 34178941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust microscale structural superlubricity between graphite and nanostructured surface.
    Huang X; Li T; Wang J; Xia K; Tan Z; Peng D; Xiang X; Liu B; Ma M; Zheng Q
    Nat Commun; 2023 May; 14(1):2931. PubMed ID: 37217500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear-Induced Interfacial Structural Conversion Triggers Macroscale Superlubricity: From Black Phosphorus Nanoflakes to Phosphorus Oxide.
    Liu Y; Li J; Li J; Yi S; Ge X; Zhang X; Luo J
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31947-31956. PubMed ID: 34190525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loading Mode-Induced Enhancement in Friction for Microscale Graphite/Hexagonal Boron Nitride Heterojunction.
    Zhang Y; Li J; Wang Y; Nie J; Wang C; Tian K; Ma M
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):5308-5315. PubMed ID: 38235683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorination to enhance superlubricity performance between self-assembled monolayer and graphite in water.
    Li J; Cao W; Li J; Ma M
    J Colloid Interface Sci; 2021 Aug; 596():44-53. PubMed ID: 33826969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superlow Friction of Graphite Induced by the Self-Assembly of Sodium Dodecyl Sulfate Molecular Layers.
    Li J; Luo J
    Langmuir; 2017 Nov; 33(44):12596-12601. PubMed ID: 29037037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of microscale superlubricity in graphite.
    Liu Z; Yang J; Grey F; Liu JZ; Liu Y; Wang Y; Yang Y; Cheng Y; Zheng Q
    Phys Rev Lett; 2012 May; 108(20):205503. PubMed ID: 23003154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of friction reduction of nanoscale sliding contacts achieved through ultrasonic excitation.
    Jiryaei Sharahi H; Egberts P; Kim S
    Nanotechnology; 2019 Feb; 30(7):075502. PubMed ID: 30523838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macroscale Superlubricity Enabled by the Synergy Effect of Graphene-Oxide Nanoflakes and Ethanediol.
    Ge X; Li J; Luo R; Zhang C; Luo J
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40863-40870. PubMed ID: 30388363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.