These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31995540)

  • 21. Macroscale Superlubricity Achieved on the Hydrophobic Graphene Coating with Glycerol.
    Liu Y; Li J; Ge X; Yi S; Wang H; Liu Y; Luo J
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18859-18869. PubMed ID: 32233416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Superlubricity Enabled by Pressure-Induced Friction Collapse.
    Sun J; Zhang Y; Lu Z; Li Q; Xue Q; Du S; Pu J; Wang L
    J Phys Chem Lett; 2018 May; 9(10):2554-2559. PubMed ID: 29714483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Boundary Slip of Oil Molecules at MoS
    Li J; Li J; Yi S; Wang K
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):8644-8653. PubMed ID: 35119817
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generalized Scaling Law of Structural Superlubricity.
    Wang J; Cao W; Song Y; Qu C; Zheng Q; Ma M
    Nano Lett; 2019 Nov; 19(11):7735-7741. PubMed ID: 31646868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions.
    Song Y; Mandelli D; Hod O; Urbakh M; Ma M; Zheng Q
    Nat Mater; 2018 Oct; 17(10):894-899. PubMed ID: 30061730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atomic-scale insights into the interfacial instability of superlubricity in hydrogenated amorphous carbon films.
    Chen X; Yin X; Qi W; Zhang C; Choi J; Wu S; Wang R; Luo J
    Sci Adv; 2020 Mar; 6(13):eaay1272. PubMed ID: 32258394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Liquid-assisted tip manipulation: fabrication of twisted bilayer graphene superlattices on HOPG.
    Yin LJ; Wang WX; Feng KK; Nie JC; Xiong CM; Dou RF; Naugle DG
    Nanoscale; 2015 Sep; 7(36):14865-71. PubMed ID: 26290114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superlubricity of Fullerene Derivatives Induced by Host-Guest Assembly.
    Tan S; Shi H; Fu L; Ma J; Du X; Song J; Liu Y; Zeng Q; Xu H; Wan J
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18924-18933. PubMed ID: 32227981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of a superlubricity nanometer interface by Raman spectroscopy.
    Shi Y; Yang X; Liu B; Dong H; Zheng Q
    Nanotechnology; 2016 Aug; 27(32):325701. PubMed ID: 27348089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The high-speed sliding friction of graphene and novel routes to persistent superlubricity.
    Liu Y; Grey F; Zheng Q
    Sci Rep; 2014 May; 4():4875. PubMed ID: 24786521
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Superlubric sliding of graphene nanoflakes on graphene.
    Feng X; Kwon S; Park JY; Salmeron M
    ACS Nano; 2013 Feb; 7(2):1718-24. PubMed ID: 23327483
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural superlubricity in graphite flakes assembled under ambient conditions.
    Deng H; Ma M; Song Y; He Q; Zheng Q
    Nanoscale; 2018 Jul; 10(29):14314-14320. PubMed ID: 30019038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Superlubricity of Silicon-Based Ceramics Sliding against Hydrogenated Amorphous Carbon in Ultrahigh Vacuum: Mechanisms of Transfer Film Formation.
    Kuwahara T; Long Y; Sayilan A; Reichenbach T; Martin JM; De Barros Bouchet MI; Moseler M; Moras G
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):8032-8044. PubMed ID: 38291784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Excellent Water Lubrication Additives for Silicon Nitride To Achieve Superlubricity under Extreme Conditions.
    Lin B; Ding M; Sui T; Cui Y; Yan S; Liu X
    Langmuir; 2019 Nov; 35(46):14861-14869. PubMed ID: 31663750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Why is Superlubricity of Diamond-Like Carbon Rare at Nanoscale?
    Jang S; Colliton AG; Flaih HS; Irgens EMK; Kramarczuk LJ; Rauber GD; Vickers J; Ogrinc AL; Zhang Z; Gong Z; Chen Z; Borovsky BP; Kim SH
    Small; 2024 Mar; ():e2400513. PubMed ID: 38545999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extreme-Pressure Superlubricity of Polymer Solution Enhanced with Hydrated Salt Ions.
    Li S; Bai P; Li Y; Jia W; Li X; Meng Y; Ma L; Tian Y
    Langmuir; 2020 Jun; 36(24):6765-6774. PubMed ID: 32460491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deformation Coupled Moiré Mapping of Superlubricity in Graphene.
    Bai H; Zou G; Bao H; Li S; Ma F; Gao H
    ACS Nano; 2023 Jul; 17(13):12594-12602. PubMed ID: 37338168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superlubricity of graphene nanoribbons on gold surfaces.
    Kawai S; Benassi A; Gnecco E; Söde H; Pawlak R; Feng X; Müllen K; Passerone D; Pignedoli CA; Ruffieux P; Fasel R; Meyer E
    Science; 2016 Feb; 351(6276):957-61. PubMed ID: 26917767
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic superlubricity on insulating and conductive surfaces in ultra-high vacuum and ambient environment.
    Gnecco E; Socoliuc A; Maier S; Gessler J; Glatzel T; Baratoff A; Meyer E
    Nanotechnology; 2009 Jan; 20(2):025501. PubMed ID: 19417269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale.
    Deng Z; Smolyanitsky A; Li Q; Feng XQ; Cannara RJ
    Nat Mater; 2012 Dec; 11(12):1032-7. PubMed ID: 23064494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.