These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 31995844)
1. Functional diversification of two bilin reductases for light perception and harvesting in unique cyanobacterium Acaryochloris marina MBIC 11017. Miyake K; Fushimi K; Kashimoto T; Maeda K; Ni-Ni-Win ; Kimura H; Sugishima M; Ikeuchi M; Narikawa R FEBS J; 2020 Sep; 287(18):4016-4031. PubMed ID: 31995844 [TBL] [Abstract][Full Text] [Related]
2. Identification of significant residues for intermediate accumulation in phycocyanobilin synthesis. Miyake K; Kimura H; Narikawa R Photochem Photobiol Sci; 2022 Apr; 21(4):437-446. PubMed ID: 35394642 [TBL] [Abstract][Full Text] [Related]
3. Red-shifted red/green-type cyanobacteriochrome AM1_1870g3 from the chlorophyll d-bearing cyanobacterium Acaryochloris marina. Narikawa R; Fushimi K; Ni-Ni-Win ; Ikeuchi M Biochem Biophys Res Commun; 2015 May; 461(2):390-5. PubMed ID: 25892514 [TBL] [Abstract][Full Text] [Related]
4. Elucidating the origins of phycocyanobilin biosynthesis and phycobiliproteins. Rockwell NC; Martin SS; Lagarias JC Proc Natl Acad Sci U S A; 2023 Apr; 120(17):e2300770120. PubMed ID: 37071675 [TBL] [Abstract][Full Text] [Related]
5. A biliverdin-binding cyanobacteriochrome from the chlorophyll d-bearing cyanobacterium Acaryochloris marina. Narikawa R; Nakajima T; Aono Y; Fushimi K; Enomoto G; Ni-Ni-Win ; Itoh S; Sato M; Ikeuchi M Sci Rep; 2015 Jan; 5():7950. PubMed ID: 25609645 [TBL] [Abstract][Full Text] [Related]
6. Molecular characterization of D Hasegawa M; Fushimi K; Miyake K; Nakajima T; Oikawa Y; Enomoto G; Sato M; Ikeuchi M; Narikawa R J Biol Chem; 2018 Feb; 293(5):1713-1727. PubMed ID: 29229775 [TBL] [Abstract][Full Text] [Related]
7. Functional Modification of Cyanobacterial Phycobiliprotein and Phycobilisomes through Bilin Metabolism Control. Sato M; Kawaguchi T; Maeda K; Watanabe M; Ikeuchi M; Narikawa R; Watanabe S ACS Synth Biol; 2024 Aug; 13(8):2391-2401. PubMed ID: 39038807 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of the first eukaryotic bilin reductase Sommerkamp JA; Frankenberg-Dinkel N; Hofmann E J Biol Chem; 2019 Sep; 294(38):13889-13901. PubMed ID: 31366727 [TBL] [Abstract][Full Text] [Related]
9. Acclimation process of the chlorophyll d-bearing cyanobacterium Acaryochloris marina to an orange light environment revealed by transcriptomic analysis and electron microscopic observation. Kashimoto T; Miyake K; Sato M; Maeda K; Matsumoto C; Ikeuchi M; Toyooka K; Watanabe S; Kanesaki Y; Narikawa R J Gen Appl Microbiol; 2020 Jun; 66(2):106-115. PubMed ID: 32147625 [TBL] [Abstract][Full Text] [Related]
10. Insights into phycoerythrobilin biosynthesis point toward metabolic channeling. Dammeyer T; Frankenberg-Dinkel N J Biol Chem; 2006 Sep; 281(37):27081-9. PubMed ID: 16857683 [TBL] [Abstract][Full Text] [Related]
11. Proximity channeling during cyanobacterial phycoerythrobilin synthesis. Aras M; Hartmann V; Hartmann J; Nowaczyk MM; Frankenberg-Dinkel N FEBS J; 2020 Jan; 287(2):284-294. PubMed ID: 31319014 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of a far-red-sensing cyanobacteriochrome reveals an atypical bilin conformation and spectral tuning mechanism. Bandara S; Rockwell NC; Zeng X; Ren Z; Wang C; Shin H; Martin SS; Moreno MV; Lagarias JC; Yang X Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33727422 [TBL] [Abstract][Full Text] [Related]
16. A conserved histidine-aspartate pair is required for exovinyl reduction of biliverdin by a cyanobacterial phycocyanobilin:ferredoxin oxidoreductase. Tu SL; Sughrue W; Britt RD; Lagarias JC J Biol Chem; 2006 Feb; 281(6):3127-36. PubMed ID: 16327013 [TBL] [Abstract][Full Text] [Related]
17. A far-red cyanobacteriochrome lineage specific for verdins. Moreno MV; Rockwell NC; Mora M; Fisher AJ; Lagarias JC Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27962-27970. PubMed ID: 33106421 [TBL] [Abstract][Full Text] [Related]
18. Two Unrelated 8-Vinyl Reductases Ensure Production of Mature Chlorophylls in Acaryochloris marina. Chen GE; Hitchcock A; Jackson PJ; Chaudhuri RR; Dickman MJ; Hunter CN; Canniffe DP J Bacteriol; 2016 May; 198(9):1393-400. PubMed ID: 26903415 [TBL] [Abstract][Full Text] [Related]
19. Ecological diversification of a cyanobacterium through divergence of its novel chlorophyll d-based light-harvesting system. Ulrich NJ; Shen G; Bryant DA; Miller SR Curr Biol; 2024 Jul; 34(13):2972-2979.e4. PubMed ID: 38851184 [TBL] [Abstract][Full Text] [Related]
20. Genomic Survey and Biochemical Analysis of Recombinant Candidate Cyanobacteriochromes Reveals Enrichment for Near UV/Violet Sensors in the Halotolerant and Alkaliphilic Cyanobacterium Microcoleus IPPAS B353. Cho SM; Jeoung SC; Song JY; Kupriyanova EV; Pronina NA; Lee BW; Jo SW; Park BS; Choi SB; Song JJ; Park YI J Biol Chem; 2015 Nov; 290(47):28502-28514. PubMed ID: 26405033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]