These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Multiscale reaction-diffusion simulations with Smoldyn. Robinson M; Andrews SS; Erban R Bioinformatics; 2015 Jul; 31(14):2406-8. PubMed ID: 25788627 [TBL] [Abstract][Full Text] [Related]
4. A Lattice-Boltzmann scheme for the simulation of diffusion in intracellular crowded systems. Angeles-Martinez L; Theodoropoulos C BMC Bioinformatics; 2015 Nov; 16():353. PubMed ID: 26530635 [TBL] [Abstract][Full Text] [Related]
5. Spatial and stochastic cellular modeling with the Smoldyn simulator. Andrews SS Methods Mol Biol; 2012; 804():519-42. PubMed ID: 22144170 [TBL] [Abstract][Full Text] [Related]
6. Surface reaction-diffusion kinetics on lattice at the microscopic scale. Chew WX; Kaizu K; Watabe M; Muniandy SV; Takahashi K; Arjunan SNV Phys Rev E; 2019 Apr; 99(4-1):042411. PubMed ID: 31108654 [TBL] [Abstract][Full Text] [Related]
7. Smoldyn: particle-based simulation with rule-based modeling, improved molecular interaction and a library interface. Andrews SS Bioinformatics; 2017 Mar; 33(5):710-717. PubMed ID: 28365760 [TBL] [Abstract][Full Text] [Related]
8. ReaDDy 2: Fast and flexible software framework for interacting-particle reaction dynamics. Hoffmann M; Fröhner C; Noé F PLoS Comput Biol; 2019 Feb; 15(2):e1006830. PubMed ID: 30818351 [TBL] [Abstract][Full Text] [Related]
9. Lattice Microbes: high-performance stochastic simulation method for the reaction-diffusion master equation. Roberts E; Stone JE; Luthey-Schulten Z J Comput Chem; 2013 Jan; 34(3):245-55. PubMed ID: 23007888 [TBL] [Abstract][Full Text] [Related]
12. MCell4 with BioNetGen: A Monte Carlo simulator of rule-based reaction-diffusion systems with Python interface. Husar A; Ordyan M; Garcia GC; Yancey JG; Saglam AS; Faeder JR; Bartol TM; Kennedy MB; Sejnowski TJ PLoS Comput Biol; 2024 Apr; 20(4):e1011800. PubMed ID: 38656994 [TBL] [Abstract][Full Text] [Related]
13. Generalizing Gillespie's Direct Method to Enable Network-Free Simulations. Suderman R; Mitra ED; Lin YT; Erickson KE; Feng S; Hlavacek WS Bull Math Biol; 2019 Aug; 81(8):2822-2848. PubMed ID: 29594824 [TBL] [Abstract][Full Text] [Related]
14. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale. Okada S; Murakami K; Incerti S; Amako K; Sasaki T Med Phys; 2019 Mar; 46(3):1483-1500. PubMed ID: 30593679 [TBL] [Abstract][Full Text] [Related]
15. Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. Elf J; Ehrenberg M Syst Biol (Stevenage); 2004 Dec; 1(2):230-6. PubMed ID: 17051695 [TBL] [Abstract][Full Text] [Related]
16. Detailed simulations of cell biology with Smoldyn 2.1. Andrews SS; Addy NJ; Brent R; Arkin AP PLoS Comput Biol; 2010 Mar; 6(3):e1000705. PubMed ID: 20300644 [TBL] [Abstract][Full Text] [Related]
17. [Series: Medical Applications of the PHITS Code (2): Acceleration by Parallel Computing]. Furuta T; Sato T Igaku Butsuri; 2015; 35(3):264-8. PubMed ID: 27125134 [TBL] [Abstract][Full Text] [Related]
18. Smoldyn on graphics processing units: massively parallel Brownian dynamics simulations. Dematté L IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(3):655-67. PubMed ID: 21788675 [TBL] [Abstract][Full Text] [Related]
19. ReaDDy--a software for particle-based reaction-diffusion dynamics in crowded cellular environments. Schöneberg J; Noé F PLoS One; 2013; 8(9):e74261. PubMed ID: 24040218 [TBL] [Abstract][Full Text] [Related]
20. BioFVM: an efficient, parallelized diffusive transport solver for 3-D biological simulations. Ghaffarizadeh A; Friedman SH; Macklin P Bioinformatics; 2016 Apr; 32(8):1256-8. PubMed ID: 26656933 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]