BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31996372)

  • 1. Alternative splicing of the bicistronic gene molybdenum cofactor synthesis 1 (
    Mayr SJ; Röper J; Schwarz G
    J Biol Chem; 2020 Mar; 295(10):3029-3039. PubMed ID: 31996372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse splicing mechanisms fuse the evolutionarily conserved bicistronic MOCS1A and MOCS1B open reading frames.
    Gray TA; Nicholls RD
    RNA; 2000 Jul; 6(7):928-36. PubMed ID: 10917590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionality of alternative splice forms of the first enzymes involved in human molybdenum cofactor biosynthesis.
    Hänzelmann P; Schwarz G; Mendel RR
    J Biol Chem; 2002 May; 277(21):18303-12. PubMed ID: 11891227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The bicistronic MOCS1 gene has alternative start codons on two mutually exclusive exons.
    Gross-Hardt S; Reiss J
    Mol Genet Metab; 2002 Aug; 76(4):340-3. PubMed ID: 12208140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mild case of molybdenum cofactor deficiency defines an alternative route of MOCS1 protein maturation.
    Mayr SJ; Sass JO; Vry J; Kirschner J; Mader I; Hövener JB; Reiss J; Santamaria-Araujo JA; Schwarz G; Grünert SC
    J Inherit Metab Dis; 2018 Mar; 41(2):187-196. PubMed ID: 29368224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term rescue of a lethal inherited disease by adeno-associated virus-mediated gene transfer in a mouse model of molybdenum-cofactor deficiency.
    Kügler S; Hahnewald R; Garrido M; Reiss J
    Am J Hum Genet; 2007 Feb; 80(2):291-7. PubMed ID: 17236133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic dissection of cyclic pyranopterin monophosphate biosynthesis in plant mitochondria.
    Kruse I; Maclean AE; Hill L; Balk J
    Biochem J; 2018 Jan; 475(2):495-509. PubMed ID: 29247140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An unusual genetic variant in the MOCS1 gene leads to complete missplicing of an alternatively spliced exon in a patient with molybdenum cofactor deficiency.
    Arenas M; Fairbanks LD; Vijayakumar K; Carr L; Escuredo E; Marinaki AM
    J Inherit Metab Dis; 2009 Aug; 32(4):560-9. PubMed ID: 19544009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of MOCS1A, an oxygen-sensitive iron-sulfur protein involved in human molybdenum cofactor biosynthesis.
    Hänzelmann P; Hernández HL; Menzel C; García-Serres R; Huynh BH; Johnson MK; Mendel RR; Schindelin H
    J Biol Chem; 2004 Aug; 279(33):34721-32. PubMed ID: 15180982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic structure and mutational spectrum of the bicistronic MOCS1 gene defective in molybdenum cofactor deficiency type A.
    Reiss J; Christensen E; Kurlemann G; Zabot MT; Dorche C
    Hum Genet; 1998 Dec; 103(6):639-44. PubMed ID: 9921896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in the molybdenum cofactor biosynthetic genes MOCS1, MOCS2, and GEPH.
    Reiss J; Johnson JL
    Hum Mutat; 2003 Jun; 21(6):569-76. PubMed ID: 12754701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ETHE1 and MOCS1 deficiencies: Disruption of mitochondrial bioenergetics, dynamics, redox homeostasis and endoplasmic reticulum-mitochondria crosstalk in patient fibroblasts.
    Grings M; Seminotti B; Karunanidhi A; Ghaloul-Gonzalez L; Mohsen AW; Wipf P; Palmfeldt J; Vockley J; Leipnitz G
    Sci Rep; 2019 Sep; 9(1):12651. PubMed ID: 31477743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shared function and moonlighting proteins in molybdenum cofactor biosynthesis.
    Leimkühler S
    Biol Chem; 2017 Aug; 398(9):1009-1026. PubMed ID: 28284029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative 5' exons and differential splicing regulate expression of protein 4.1R isoforms with distinct N-termini.
    Parra MK; Gee SL; Koury MJ; Mohandas N; Conboy JG
    Blood; 2003 May; 101(10):4164-71. PubMed ID: 12522012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biosynthesis of the molybdenum cofactors in Escherichia coli.
    Leimkühler S
    Environ Microbiol; 2020 Jun; 22(6):2007-2026. PubMed ID: 32239579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a novel human subfamily of mitochondrial carriers with calcium-binding domains.
    del Arco A; Satrústegui J
    J Biol Chem; 2004 Jun; 279(23):24701-13. PubMed ID: 15054102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization and alternate splicing of the murine folylpolyglutamate synthetase gene. Different splice variants in L1210 cells encode mitochondrial or cytosolic forms of the enzyme.
    Roy K; Mitsugi K; Sirotnak FM
    J Biol Chem; 1996 Sep; 271(39):23820-7. PubMed ID: 8798611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C-Terminal glycine-gated radical initiation by GTP 3',8-cyclase in the molybdenum cofactor biosynthesis.
    Hover BM; Yokoyama K
    J Am Chem Soc; 2015 Mar; 137(9):3352-9. PubMed ID: 25697423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lessons From the Studies of a CC Bond Forming Radical SAM Enzyme in Molybdenum Cofactor Biosynthesis.
    Pang H; Yokoyama K
    Methods Enzymol; 2018; 606():485-522. PubMed ID: 30097104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human molybdopterin synthase gene: genomic structure and mutations in molybdenum cofactor deficiency type B.
    Reiss J; Dorche C; Stallmeyer B; Mendel RR; Cohen N; Zabot MT
    Am J Hum Genet; 1999 Mar; 64(3):706-11. PubMed ID: 10053004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.