These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

614 related articles for article (PubMed ID: 31996394)

  • 1. Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists.
    Benoit SL; Maier RJ; Sawers RG; Greening C
    Microbiol Mol Biol Rev; 2020 Feb; 84(1):. PubMed ID: 31996394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory hydrogen use by Salmonella enterica serovar Typhimurium is essential for virulence.
    Maier RJ; Olczak A; Maier S; Soni S; Gunn J
    Infect Immun; 2004 Nov; 72(11):6294-9. PubMed ID: 15501756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of molecular hydrogen as an energy substrate by human pathogenic bacteria.
    Maier RJ
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):83-5. PubMed ID: 15667272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival.
    Greening C; Biswas A; Carere CR; Jackson CJ; Taylor MC; Stott MB; Cook GM; Morales SE
    ISME J; 2016 Mar; 10(3):761-77. PubMed ID: 26405831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H2 metabolism is widespread and diverse among human colonic microbes.
    Wolf PG; Biswas A; Morales SE; Greening C; Gaskins HR
    Gut Microbes; 2016 May; 7(3):235-45. PubMed ID: 27123663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of hydrogenase expression and hydrogen sensing in bacterial cell physiology.
    Greening C; Cook GM
    Curr Opin Microbiol; 2014 Apr; 18():30-8. PubMed ID: 24607643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-converting hydrogenases: the link between H
    Schoelmerich MC; Müller V
    Cell Mol Life Sci; 2020 Apr; 77(8):1461-1481. PubMed ID: 31630229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diverse hydrogen production and consumption pathways influence methane production in ruminants.
    Greening C; Geier R; Wang C; Woods LC; Morales SE; McDonald MJ; Rushton-Green R; Morgan XC; Koike S; Leahy SC; Kelly WJ; Cann I; Attwood GT; Cook GM; Mackie RI
    ISME J; 2019 Oct; 13(10):2617-2632. PubMed ID: 31243332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the Hya hydrogenase in recycling of anaerobically produced H2 in Salmonella enterica serovar Typhimurium.
    Zbell AL; Maier RJ
    Appl Environ Microbiol; 2009 Mar; 75(5):1456-9. PubMed ID: 19114523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen and nickel metabolism in helicobacter species.
    Benoit SL; Maier RJ
    Ann N Y Acad Sci; 2008 Mar; 1125():242-51. PubMed ID: 18378596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments.
    Kessler AJ; Chen YJ; Waite DW; Hutchinson T; Koh S; Popa ME; Beardall J; Hugenholtz P; Cook PLM; Greening C
    Nat Microbiol; 2019 Jun; 4(6):1014-1023. PubMed ID: 30858573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogenases for biological hydrogen production.
    Kim DH; Kim MS
    Bioresour Technol; 2011 Sep; 102(18):8423-31. PubMed ID: 21435869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salmonella Typhimurium strain ATCC14028 requires H2-hydrogenases for growth in the gut, but not at systemic sites.
    Maier L; Barthel M; Stecher B; Maier RJ; Gunn JS; Hardt WD
    PLoS One; 2014; 9(10):e110187. PubMed ID: 25303479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production.
    Redwood MD; Mikheenko IP; Sargent F; Macaskie LE
    FEMS Microbiol Lett; 2008 Jan; 278(1):48-55. PubMed ID: 17995952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms for hydrogen production by different bacteria during mixed-acid and photo-fermentation and perspectives of hydrogen production biotechnology.
    Trchounian A
    Crit Rev Biotechnol; 2015 Mar; 35(1):103-13. PubMed ID: 23895041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximizing reductant flow into microbial H2 production.
    Kontur WS; Noguera DR; Donohue TJ
    Curr Opin Biotechnol; 2012 Jun; 23(3):382-9. PubMed ID: 22036711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbiota-derived hydrogen fuels Salmonella typhimurium invasion of the gut ecosystem.
    Maier L; Vyas R; Cordova CD; Lindsay H; Schmidt TS; Brugiroux S; Periaswamy B; Bauer R; Sturm A; Schreiber F; von Mering C; Robinson MD; Stecher B; Hardt WD
    Cell Host Microbe; 2013 Dec; 14(6):641-51. PubMed ID: 24331462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia.
    Berney M; Greening C; Conrad R; Jacobs WR; Cook GM
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):11479-84. PubMed ID: 25049411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria.
    Matheus Carnevali PB; Schulz F; Castelle CJ; Kantor RS; Shih PM; Sharon I; Santini JM; Olm MR; Amano Y; Thomas BC; Anantharaman K; Burstein D; Becraft ED; Stepanauskas R; Woyke T; Banfield JF
    Nat Commun; 2019 Jan; 10(1):463. PubMed ID: 30692531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A widely distributed hydrogenase oxidises atmospheric H
    Islam ZF; Welsh C; Bayly K; Grinter R; Southam G; Gagen EJ; Greening C
    ISME J; 2020 Nov; 14(11):2649-2658. PubMed ID: 32647310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.