BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 31996674)

  • 1. Arginine π-stacking drives binding to fibrils of the Alzheimer protein Tau.
    Ferrari L; Stucchi R; Konstantoulea K; van de Kamp G; Kos R; Geerts WJC; van Bezouwen LS; Förster FG; Altelaar M; Hoogenraad CC; Rüdiger SGD
    Nat Commun; 2020 Jan; 11(1):571. PubMed ID: 31996674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HspB1 and Hsc70 chaperones engage distinct tau species and have different inhibitory effects on amyloid formation.
    Baughman HER; Clouser AF; Klevit RE; Nath A
    J Biol Chem; 2018 Feb; 293(8):2687-2700. PubMed ID: 29298892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic Amyloid Switch Triggered by Early Heterotypic Oligomerization of Intrinsically Disordered α-Synuclein and Tau.
    Bhasne K; Sebastian S; Jain N; Mukhopadhyay S
    J Mol Biol; 2018 Aug; 430(16):2508-2520. PubMed ID: 29704492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amyloidogenesis of Tau protein.
    Nizynski B; Dzwolak W; Nieznanski K
    Protein Sci; 2017 Nov; 26(11):2126-2150. PubMed ID: 28833749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hsp90 activator Aha1 drives production of pathological tau aggregates.
    Shelton LB; Baker JD; Zheng D; Sullivan LE; Solanki PK; Webster JM; Sun Z; Sabbagh JJ; Nordhues BA; Koren J; Ghosh S; Blagg BSJ; Blair LJ; Dickey CA
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):9707-9712. PubMed ID: 28827321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural disorder in four-repeat Tau fibrils reveals a new mechanism for barriers to cross-seeding of Tau isoforms.
    Weismiller HA; Murphy R; Wei G; Ma B; Nussinov R; Margittai M
    J Biol Chem; 2018 Nov; 293(45):17336-17348. PubMed ID: 30242125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hsp90-Tau complex reveals molecular basis for specificity in chaperone action.
    Karagöz GE; Duarte AM; Akoury E; Ippel H; Biernat J; Morán Luengo T; Radli M; Didenko T; Nordhues BA; Veprintsev DB; Dickey CA; Mandelkow E; Zweckstetter M; Boelens R; Madl T; Rüdiger SG
    Cell; 2014 Feb; 156(5):963-74. PubMed ID: 24581495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disassembly of Tau fibrils by the human Hsp70 disaggregation machinery generates small seeding-competent species.
    Nachman E; Wentink AS; Madiona K; Bousset L; Katsinelos T; Allinson K; Kampinga H; McEwan WA; Jahn TR; Melki R; Mogk A; Bukau B; Nussbaum-Krammer C
    J Biol Chem; 2020 Jul; 295(28):9676-9690. PubMed ID: 32467226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic insights into remodeled Tau-derived PHF6 peptide fibrils by Naphthoquinone-Tryptophan hybrids.
    KrishnaKumar VG; Paul A; Gazit E; Segal D
    Sci Rep; 2018 Jan; 8(1):71. PubMed ID: 29311706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation.
    Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M
    Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of the Formation of Tau and Aβ Peptide Mixed Aggregates on the Secondary Structure of the N-Terminal Region of Aβ.
    Rojas AV; Maisuradze GG; Scheraga HA
    J Phys Chem B; 2018 Jul; 122(28):7049-7056. PubMed ID: 29940109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer's disease.
    Salminen A; Ojala J; Kaarniranta K; Hiltunen M; Soininen H
    Prog Neurobiol; 2011 Jan; 93(1):99-110. PubMed ID: 21056617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro 0N4R tau fibrils contain a monomorphic β-sheet core enclosed by dynamically heterogeneous fuzzy coat segments.
    Dregni AJ; Mandala VS; Wu H; Elkins MR; Wang HK; Hung I; DeGrado WF; Hong M
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16357-16366. PubMed ID: 31358628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of Hsp90-induced oligomerizaton of Tau.
    Weickert S; Wawrzyniuk M; John LH; Rüdiger SGD; Drescher M
    Sci Adv; 2020 Mar; 6(11):eaax6999. PubMed ID: 32201713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can any "non-specific charge modification within microtubule binding domains of Tau" be a prerequisite of the protein amyloid aggregation? An in vitro study on the 1N4R isoform.
    Jangholi A; Ashrafi-Kooshk MR; Arab SS; Karima S; Poorebrahim M; Ghadami SA; Moosavi-Movahedi AA; Khodarahmi R
    Int J Biol Macromol; 2018 Apr; 109():188-204. PubMed ID: 29248553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic Prion-Like Cross-Talk between a Key Alzheimer's Disease Tau-Fragment R3 and the Type 2 Diabetes Peptide IAPP.
    Arya S; Claud SL; Cantrell KL; Bowers MT
    ACS Chem Neurosci; 2019 Nov; 10(11):4757-4765. PubMed ID: 31642657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Release of a disordered domain enhances HspB1 chaperone activity toward tau.
    Baughman HER; Pham TT; Adams CS; Nath A; Klevit RE
    Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2923-2929. PubMed ID: 31974309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection and Characterization of Tau Binding ᴅ-Enantiomeric Peptides with Potential for Therapy of Alzheimer Disease.
    Dammers C; Yolcu D; Kukuk L; Willbold D; Pickhardt M; Mandelkow E; Horn AH; Sticht H; Malhis MN; Will N; Schuster J; Funke SA
    PLoS One; 2016; 11(12):e0167432. PubMed ID: 28006031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tau Protein Squired by Molecular Chaperones During Alzheimer's Disease.
    Gorantla NV; Chinnathambi S
    J Mol Neurosci; 2018 Nov; 66(3):356-368. PubMed ID: 30267382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Enigma of Tau Protein Aggregation: Mechanistic Insights and Future Challenges.
    Zheng H; Sun H; Cai Q; Tai HC
    Int J Mol Sci; 2024 May; 25(9):. PubMed ID: 38732197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.