BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 31996743)

  • 1. Functional analysis of molecular and pharmacological modulators of mitochondrial fatty acid oxidation.
    Ma Y; Wang W; Devarakonda T; Zhou H; Wang XY; Salloum FN; Spiegel S; Fang X
    Sci Rep; 2020 Jan; 10(1):1450. PubMed ID: 31996743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle's cycle.
    Fang YH; Piao L; Hong Z; Toth PT; Marsboom G; Bache-Wiig P; Rehman J; Archer SL
    J Mol Med (Berl); 2012 Jan; 90(1):31-43. PubMed ID: 21874543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation.
    Li Y; Xiong Z; Yan W; Gao E; Cheng H; Wu G; Liu Y; Zhang L; Li C; Wang S; Fan M; Zhao H; Zhang F; Tao L
    Theranostics; 2020; 10(12):5623-5640. PubMed ID: 32373236
    [No Abstract]   [Full Text] [Related]  

  • 4. Inhibition of PPAR-alpha activity in mice with cardiac-restricted expression of tumor necrosis factor: potential role of TGF-beta/Smad3.
    Sekiguchi K; Tian Q; Ishiyama M; Burchfield J; Gao F; Mann DL; Barger PM
    Am J Physiol Heart Circ Physiol; 2007 Mar; 292(3):H1443-51. PubMed ID: 17098824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of partial fatty acid oxidation inhibitors for metabolic therapy of angina pectoris and heart failure.
    Rupp H; Zarain-Herzberg A; Maisch B
    Herz; 2002 Nov; 27(7):621-36. PubMed ID: 12439634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. β-catenin-activated hepatocellular carcinomas are addicted to fatty acids.
    Senni N; Savall M; Cabrerizo Granados D; Alves-Guerra MC; Sartor C; Lagoutte I; Gougelet A; Terris B; Gilgenkrantz H; Perret C; Colnot S; Bossard P
    Gut; 2019 Feb; 68(2):322-334. PubMed ID: 29650531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PPARα agonist fenofibrate enhances fatty acid β-oxidation and attenuates polycystic kidney and liver disease in mice.
    Lakhia R; Yheskel M; Flaten A; Quittner-Strom EB; Holland WL; Patel V
    Am J Physiol Renal Physiol; 2018 Jan; 314(1):F122-F131. PubMed ID: 28903946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance.
    Ito K; Carracedo A; Weiss D; Arai F; Ala U; Avigan DE; Schafer ZT; Evans RM; Suda T; Lee CH; Pandolfi PP
    Nat Med; 2012 Sep; 18(9):1350-8. PubMed ID: 22902876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impairment of Fatty Acid Oxidation in Alveolar Epithelial Cells Mediates Acute Lung Injury.
    Cui H; Xie N; Banerjee S; Ge J; Guo S; Liu G
    Am J Respir Cell Mol Biol; 2019 Feb; 60(2):167-178. PubMed ID: 30183330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CDKN2A/p16INK4a suppresses hepatic fatty acid oxidation through the AMPKα2-SIRT1-PPARα signaling pathway.
    Deleye Y; Cotte AK; Hannou SA; Hennuyer N; Bernard L; Derudas B; Caron S; Legry V; Vallez E; Dorchies E; Martin N; Lancel S; Annicotte JS; Bantubungi K; Pourtier A; Raverdy V; Pattou F; Lefebvre P; Abbadie C; Staels B; Haas JT; Paumelle R
    J Biol Chem; 2020 Dec; 295(50):17310-17322. PubMed ID: 33037071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impairment of PPAR
    Chung KW; Lee EK; Lee MK; Oh GT; Yu BP; Chung HY
    J Am Soc Nephrol; 2018 Apr; 29(4):1223-1237. PubMed ID: 29440279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Etomoxir Actions on Regulatory and Memory T Cells Are Independent of Cpt1a-Mediated Fatty Acid Oxidation.
    Raud B; Roy DG; Divakaruni AS; Tarasenko TN; Franke R; Ma EH; Samborska B; Hsieh WY; Wong AH; Stüve P; Arnold-Schrauf C; Guderian M; Lochner M; Rampertaap S; Romito K; Monsale J; Brönstrup M; Bensinger SJ; Murphy AN; McGuire PJ; Jones RG; Sparwasser T; Berod L
    Cell Metab; 2018 Sep; 28(3):504-515.e7. PubMed ID: 30043753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pancreatic islet adaptation to fasting is dependent on peroxisome proliferator-activated receptor alpha transcriptional up-regulation of fatty acid oxidation.
    Gremlich S; Nolan C; Roduit R; Burcelin R; Peyot ML; Delghingaro-Augusto V; Desvergne B; Michalik L; Prentki M; Wahli W
    Endocrinology; 2005 Jan; 146(1):375-82. PubMed ID: 15459119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A requirement for fatty acid oxidation in the hormone-induced meiotic maturation of mouse oocytes.
    Valsangkar D; Downs SM
    Biol Reprod; 2013 Aug; 89(2):43. PubMed ID: 23863407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PPARα (Peroxisome Proliferator-activated Receptor α) Activation Reduces Hepatic CEACAM1 Protein Expression to Regulate Fatty Acid Oxidation during Fasting-refeeding Transition.
    Ramakrishnan SK; Khuder SS; Al-Share QY; Russo L; Abdallah SL; Patel PR; Heinrich G; Muturi HT; Mopidevi BR; Oyarce AM; Shah YM; Sanchez ER; Najjar SM
    J Biol Chem; 2016 Apr; 291(15):8121-9. PubMed ID: 26846848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporally quantitative in vivo imaging of mitochondrial fatty acid β-oxidation at cellular-level resolution in mice.
    Matsumoto A; Matsui I; Uchinomiya S; Katsuma Y; Yasuda S; Okushima H; Imai A; Yamamoto T; Ojida A; Inoue K; Isaka Y
    Am J Physiol Endocrinol Metab; 2023 Nov; 325(5):E552-E561. PubMed ID: 37729022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes.
    Paczkowski M; Silva E; Schoolcraft WB; Krisher RL
    Biol Reprod; 2013 May; 88(5):111. PubMed ID: 23536372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear Peroxisome Proliferator-Activated Receptors (PPARs) as Therapeutic Targets of Resveratrol for Autism Spectrum Disorder.
    Barone R; Rizzo R; Tabbì G; Malaguarnera M; Frye RE; Bastin J
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 30995737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological inhibition of fatty acid oxidation reduces atherosclerosis progression by suppression of macrophage NLRP3 inflammasome activation.
    Hohensinner PJ; Lenz M; Haider P; Mayer J; Richter M; Kaun C; Goederle L; Brekalo M; Salzmann M; Sharma S; Fischer MB; Stojkovic S; Ramsmayer D; Hengstenberg C; Podesser BK; Huber K; Binder CJ; Wojta J; Speidl WS
    Biochem Pharmacol; 2021 Aug; 190():114634. PubMed ID: 34058186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of mitochondrial fatty acid β-oxidation in human: what can we learn from inborn fatty acid β-oxidation deficiencies?
    Bastin J
    Biochimie; 2014 Jan; 96():113-20. PubMed ID: 23764392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.