These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 31996849)
1. Processive extrusion of polypeptide loops by a Hsp100 disaggregase. Avellaneda MJ; Franke KB; Sunderlikova V; Bukau B; Mogk A; Tans SJ Nature; 2020 Feb; 578(7794):317-320. PubMed ID: 31996849 [TBL] [Abstract][Full Text] [Related]
2. Escherichia coli ClpB is a non-processive polypeptide translocase. Li T; Weaver CL; Lin J; Duran EC; Miller JM; Lucius AL Biochem J; 2015 Aug; 470(1):39-52. PubMed ID: 26251445 [TBL] [Abstract][Full Text] [Related]
3. Structural basis for substrate gripping and translocation by the ClpB AAA+ disaggregase. Rizo AN; Lin J; Gates SN; Tse E; Bart SM; Castellano LM; DiMaio F; Shorter J; Southworth DR Nat Commun; 2019 Jun; 10(1):2393. PubMed ID: 31160557 [TBL] [Abstract][Full Text] [Related]
4. Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation. Winkler J; Tyedmers J; Bukau B; Mogk A J Cell Biol; 2012 Aug; 198(3):387-404. PubMed ID: 22869599 [TBL] [Abstract][Full Text] [Related]
5. Single turnover transient state kinetics reveals processive protein unfolding catalyzed by Banwait JK; Islam L; Lucius AL Elife; 2024 Oct; 13():. PubMed ID: 39374121 [No Abstract] [Full Text] [Related]
6. Two-Step Activation Mechanism of the ClpB Disaggregase for Sequential Substrate Threading by the Main ATPase Motor. Deville C; Franke K; Mogk A; Bukau B; Saibil HR Cell Rep; 2019 Jun; 27(12):3433-3446.e4. PubMed ID: 31216466 [TBL] [Abstract][Full Text] [Related]
7. Bacterial and Yeast AAA+ Disaggregases ClpB and Hsp104 Operate through Conserved Mechanism Involving Cooperation with Hsp70. Kummer E; Szlachcic A; Franke KB; Ungelenk S; Bukau B; Mogk A J Mol Biol; 2016 Oct; 428(21):4378-4391. PubMed ID: 27616763 [TBL] [Abstract][Full Text] [Related]
8. Hsp70 chaperone machine remodels protein aggregates at the initial step of Hsp70-Hsp100-dependent disaggregation. Zietkiewicz S; Lewandowska A; Stocki P; Liberek K J Biol Chem; 2006 Mar; 281(11):7022-9. PubMed ID: 16415353 [TBL] [Abstract][Full Text] [Related]
9. Disruption of ionic interactions between the nucleotide binding domain 1 (NBD1) and middle (M) domain in Hsp100 disaggregase unleashes toxic hyperactivity and partial independence from Hsp70. Lipińska N; Ziętkiewicz S; Sobczak A; Jurczyk A; Potocki W; Morawiec E; Wawrzycka A; Gumowski K; Ślusarz M; Rodziewicz-Motowidło S; Chruściel E; Liberek K J Biol Chem; 2013 Jan; 288(4):2857-69. PubMed ID: 23233670 [TBL] [Abstract][Full Text] [Related]
10. Examination of polypeptide substrate specificity for Escherichia coli ClpB. Li T; Lin J; Lucius AL Proteins; 2015 Jan; 83(1):117-34. PubMed ID: 25363713 [TBL] [Abstract][Full Text] [Related]
11. Poly-L-lysine enhances the protein disaggregation activity of ClpB. Strub C; Schlieker C; Bukau B; Mogk A FEBS Lett; 2003 Oct; 553(1-2):125-30. PubMed ID: 14550559 [TBL] [Abstract][Full Text] [Related]
12. ClpG Provides Increased Heat Resistance by Acting as Superior Disaggregase. Katikaridis P; Meins L; Kamal SM; Römling U; Mogk A Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31810333 [TBL] [Abstract][Full Text] [Related]
13. Basic mechanism of the autonomous ClpG disaggregase. Katikaridis P; Römling U; Mogk A J Biol Chem; 2021; 296():100460. PubMed ID: 33639171 [TBL] [Abstract][Full Text] [Related]
14. ClpB N-terminal domain plays a regulatory role in protein disaggregation. Rosenzweig R; Farber P; Velyvis A; Rennella E; Latham MP; Kay LE Proc Natl Acad Sci U S A; 2015 Dec; 112(50):E6872-81. PubMed ID: 26621746 [TBL] [Abstract][Full Text] [Related]
15. Interplay between E. coli DnaK, ClpB and GrpE during protein disaggregation. Doyle SM; Shastry S; Kravats AN; Shih YH; Miot M; Hoskins JR; Stan G; Wickner S J Mol Biol; 2015 Jan; 427(2):312-27. PubMed ID: 25451597 [TBL] [Abstract][Full Text] [Related]
16. Chaperone-assisted protein aggregate reactivation: Different solutions for the same problem. Aguado A; Fernández-Higuero JA; Moro F; Muga A Arch Biochem Biophys; 2015 Aug; 580():121-34. PubMed ID: 26159839 [TBL] [Abstract][Full Text] [Related]
17. Structural pathway of regulated substrate transfer and threading through an Hsp100 disaggregase. Deville C; Carroni M; Franke KB; Topf M; Bukau B; Mogk A; Saibil HR Sci Adv; 2017 Aug; 3(8):e1701726. PubMed ID: 28798962 [TBL] [Abstract][Full Text] [Related]
18. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Martin A; Baker TA; Sauer RT Nat Struct Mol Biol; 2008 Nov; 15(11):1147-51. PubMed ID: 18931677 [TBL] [Abstract][Full Text] [Related]
19. Interaction of substrate-mimicking peptides with the AAA+ ATPase ClpB from Escherichia coli. Ranaweera CB; Glaza P; Yang T; Zolkiewski M Arch Biochem Biophys; 2018 Oct; 655():12-17. PubMed ID: 30092228 [TBL] [Abstract][Full Text] [Related]
20. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Weibezahn J; Tessarz P; Schlieker C; Zahn R; Maglica Z; Lee S; Zentgraf H; Weber-Ban EU; Dougan DA; Tsai FT; Mogk A; Bukau B Cell; 2004 Nov; 119(5):653-65. PubMed ID: 15550247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]