These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 31997048)
1. Matrix deformations around angiogenic sprouts correlate to sprout dynamics and suggest pulling activity. Vaeyens MM; Jorge-Peñas A; Barrasa-Fano J; Steuwe C; Heck T; Carmeliet P; Roeffaers M; Van Oosterwyck H Angiogenesis; 2020 Aug; 23(3):315-324. PubMed ID: 31997048 [TBL] [Abstract][Full Text] [Related]
2. Spatial-temporal order-disorder transition in angiogenic NOTCH signaling controls cell fate specification. Kang TY; Bocci F; Nie Q; Onuchic JN; Levchenko A Elife; 2024 Feb; 12():. PubMed ID: 38376371 [TBL] [Abstract][Full Text] [Related]
3. Direct comparison of angiogenesis in natural and synthetic biomaterials reveals that matrix porosity regulates endothelial cell invasion speed and sprout diameter. Wang WY; Kent RN; Huang SA; Jarman EH; Shikanov EH; Davidson CD; Hiraki HL; Lin D; Wall MA; Matera DL; Shin JW; Polacheck WJ; Shikanov A; Baker BM Acta Biomater; 2021 Nov; 135():260-273. PubMed ID: 34469789 [TBL] [Abstract][Full Text] [Related]
4. The Force at the Tip--Modelling Tension and Proliferation in Sprouting Angiogenesis. Santos-Oliveira P; Correia A; Rodrigues T; Ribeiro-Rodrigues TM; Matafome P; Rodríguez-Manzaneque JC; Seiça R; Girão H; Travasso RD PLoS Comput Biol; 2015 Aug; 11(8):e1004436. PubMed ID: 26248210 [TBL] [Abstract][Full Text] [Related]
5. Dynamic Endothelial Stalk Cell-Matrix Interactions Regulate Angiogenic Sprout Diameter. Wang WY; Jarman EH; Lin D; Baker BM Front Bioeng Biotechnol; 2021; 9():620128. PubMed ID: 33869150 [TBL] [Abstract][Full Text] [Related]
6. Computational Screening of Tip and Stalk Cell Behavior Proposes a Role for Apelin Signaling in Sprout Progression. Palm MM; Dallinga MG; van Dijk E; Klaassen I; Schlingemann RO; Merks RM PLoS One; 2016; 11(11):e0159478. PubMed ID: 27828952 [TBL] [Abstract][Full Text] [Related]
7. Angiogenesis-on-a-chip coupled with single-cell RNA sequencing reveals spatially differential activations of autophagy along angiogenic sprouts. Lee S; Kim H; Kim BS; Chae S; Jung S; Lee JS; Yu J; Son K; Chung M; Kim JK; Hwang D; Baek SH; Jeon NL Nat Commun; 2024 Jan; 15(1):230. PubMed ID: 38172108 [TBL] [Abstract][Full Text] [Related]
8. A Comparative Study of Collagen Matrix Density Effect on Endothelial Sprout Formation Using Experimental and Computational Approaches. Shamloo A; Mohammadaliha N; Heilshorn SC; Bauer AL Ann Biomed Eng; 2016 Apr; 44(4):929-41. PubMed ID: 26271521 [TBL] [Abstract][Full Text] [Related]
9. Mechanical interaction of angiogenic microvessels with the extracellular matrix. Edgar LT; Hoying JB; Utzinger U; Underwood CJ; Krishnan L; Baggett BK; Maas SA; Guilkey JE; Weiss JA J Biomech Eng; 2014 Feb; 136(2):021001. PubMed ID: 24441831 [TBL] [Abstract][Full Text] [Related]
10. Fast quantitative time lapse displacement imaging of endothelial cell invasion. Steuwe C; Vaeyens MM; Jorge-Peñas A; Cokelaere C; Hofkens J; Roeffaers MBJ; Van Oosterwyck H PLoS One; 2020; 15(1):e0227286. PubMed ID: 31910228 [TBL] [Abstract][Full Text] [Related]
11. Three-Dimensional Characterization of Mechanical Interactions between Endothelial Cells and Extracellular Matrix during Angiogenic Sprouting. Du Y; Herath SC; Wang QG; Wang DA; Asada HH; Chen PC Sci Rep; 2016 Feb; 6():21362. PubMed ID: 26903154 [TBL] [Abstract][Full Text] [Related]
12. Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. Kniazeva E; Putnam AJ Am J Physiol Cell Physiol; 2009 Jul; 297(1):C179-87. PubMed ID: 19439531 [TBL] [Abstract][Full Text] [Related]
13. Modelling Tumor-induced Angiogenesis: Combination of Stochastic Sprout Spacing and Sprout Progression. Hosseini F; Naghavi N J Biomed Phys Eng; 2017 Sep; 7(3):233-256. PubMed ID: 29082215 [TBL] [Abstract][Full Text] [Related]
14. An Electromagnetic System for Inducing a Localized Force Gradient in an ECM and Its Influence on HMVEC Sprouting. See HH; Herath SCB; Arayanarakool R; Du Y; Tan E; Ge R; Asada H; Chen PCY SLAS Technol; 2018 Feb; 23(1):70-82. PubMed ID: 28922618 [TBL] [Abstract][Full Text] [Related]
16. Perfused 3D angiogenic sprouting in a high-throughput in vitro platform. van Duinen V; Zhu D; Ramakers C; van Zonneveld AJ; Vulto P; Hankemeier T Angiogenesis; 2019 Feb; 22(1):157-165. PubMed ID: 30171498 [TBL] [Abstract][Full Text] [Related]
17. Advanced in silico validation framework for three-dimensional traction force microscopy and application to an in vitro model of sprouting angiogenesis. Barrasa-Fano J; Shapeti A; de Jong J; Ranga A; Sanz-Herrera JA; Van Oosterwyck H Acta Biomater; 2021 May; 126():326-338. PubMed ID: 33737201 [TBL] [Abstract][Full Text] [Related]
18. Role of the cytoskeleton in formation and maintenance of angiogenic sprouts. Bayless KJ; Johnson GA J Vasc Res; 2011; 48(5):369-85. PubMed ID: 21464572 [TBL] [Abstract][Full Text] [Related]
19. Actomyosin-dependent invasion of endothelial sprouts in collagen. Vaeyens MM; Jorge-Peñas A; Barrasa-Fano J; Shapeti A; Roeffaers M; Van Oosterwyck H Cytoskeleton (Hoboken); 2020 Jul; 77(7):261-276. PubMed ID: 32588525 [TBL] [Abstract][Full Text] [Related]