BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31997389)

  • 1. Retina Development in Vertebrates: Systems Biology Approaches to Understanding Genetic Programs: On the Contribution of Next-Generation Sequencing Methods to the Characterization of the Regulatory Networks Controlling Vertebrate Eye Development.
    Buono L; Martinez-Morales JR
    Bioessays; 2020 Apr; 42(4):e1900187. PubMed ID: 31997389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Gene Regulatory Networks from Single-Cell Expression Data.
    Li S; Yan H; Lee J
    Methods Mol Biol; 2021; 2328():153-170. PubMed ID: 34251624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for ChIP-seq analysis: A practical workflow and advanced applications.
    Nakato R; Sakata T
    Methods; 2021 Mar; 187():44-53. PubMed ID: 32240773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BAMscale: quantification of next-generation sequencing peaks and generation of scaled coverage tracks.
    Pongor LS; Gross JM; Vera Alvarez R; Murai J; Jang SM; Zhang H; Redon C; Fu H; Huang SY; Thakur B; Baris A; Marino-Ramirez L; Landsman D; Aladjem MI; Pommier Y
    Epigenetics Chromatin; 2020 Apr; 13(1):21. PubMed ID: 32321568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ancestral transcriptome inference based on RNA-Seq and ChIP-seq data.
    Yang J; Ruan H; Zou Y; Su Z; Gu X
    Methods; 2020 Apr; 176():99-105. PubMed ID: 30472248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From reads to insight: a hitchhiker's guide to ATAC-seq data analysis.
    Yan F; Powell DR; Curtis DJ; Wong NC
    Genome Biol; 2020 Feb; 21(1):22. PubMed ID: 32014034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexed Analysis of Retinal Gene Expression and Chromatin Accessibility using scRNA-Seq and scATAC-Seq.
    Weir K; Leavey P; Santiago C; Blackshaw S
    J Vis Exp; 2021 Mar; (169):. PubMed ID: 33779599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inference of Developmental Gene Regulatory Networks Beyond Classical Model Systems: New Approaches in the Post-genomic Era.
    Fernandez-Valverde SL; Aguilera F; Ramos-Díaz RA
    Integr Comp Biol; 2018 Oct; 58(4):640-653. PubMed ID: 29917089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global Analyses to Identify Direct Transcriptional Targets of p53.
    Galbraith MD; Andrysik Z; Sullivan KD; Espinosa JM
    Methods Mol Biol; 2021; 2267():19-56. PubMed ID: 33786783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of gene network bifurcation during optic cup morphogenesis in zebrafish.
    Buono L; Corbacho J; Naranjo S; Almuedo-Castillo M; Moreno-Marmol T; de la Cerda B; Sanabria-Reinoso E; Polvillo R; Díaz-Corrales FJ; Bogdanovic O; Bovolenta P; Martínez-Morales JR
    Nat Commun; 2021 Jun; 12(1):3866. PubMed ID: 34162866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ChIP-Seq Assays from Mammalian Cartilage and Chondrocytes.
    Yamakawa A; Hojo H; Ohba S
    Methods Mol Biol; 2021; 2245():167-178. PubMed ID: 33315202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive analysis of single cell ATAC-seq data with SnapATAC.
    Fang R; Preissl S; Li Y; Hou X; Lucero J; Wang X; Motamedi A; Shiau AK; Zhou X; Xie F; Mukamel EA; Zhang K; Zhang Y; Behrens MM; Ecker JR; Ren B
    Nat Commun; 2021 Feb; 12(1):1337. PubMed ID: 33637727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Cell Capture, RNA-seq, and Transcriptome Analysis from the Neural Retina.
    Dharmat R; Kim S; Li Y; Chen R
    Methods Mol Biol; 2020; 2092():159-186. PubMed ID: 31786788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants.
    Chow CN; Lee TY; Hung YC; Li GZ; Tseng KC; Liu YH; Kuo PL; Zheng HQ; Chang WC
    Nucleic Acids Res; 2019 Jan; 47(D1):D1155-D1163. PubMed ID: 30395277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systems biology of lens development: A paradigm for disease gene discovery in the eye.
    Anand D; Lachke SA
    Exp Eye Res; 2017 Mar; 156():22-33. PubMed ID: 26992779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encounters across networks: Windows into principles of genomic regulation.
    Rothenberg EV
    Mar Genomics; 2019 Apr; 44():3-12. PubMed ID: 30661741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated Chip-Seq and RNA-Seq Data Analysis Coupled with Bioinformatics Approaches to Investigate Regulatory Landscape of Transcription Modulators in Breast Cancer Cells.
    Ramos J; Felty Q; Roy D
    Methods Mol Biol; 2020; 2102():35-59. PubMed ID: 31989549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping Transcriptome-Wide and Genome-Wide RNA-DNA Contacts with Chromatin-Associated RNA Sequencing (ChAR-seq).
    Limouse C; Jukam D; Smith OK; Fryer KA; Straight AF
    Methods Mol Biol; 2020; 2161():115-142. PubMed ID: 32681510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward understanding the evolution of vertebrate gene regulatory networks: comparative genomics and epigenomic approaches.
    Martinez-Morales JR
    Brief Funct Genomics; 2016 Jul; 15(4):315-21. PubMed ID: 26293604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionally Annotating Regulatory Elements in the Equine Genome Using Histone Mark ChIP-Seq.
    Kingsley NB; Kern C; Creppe C; Hales EN; Zhou H; Kalbfleisch TS; MacLeod JN; Petersen JL; Finno CJ; Bellone RR
    Genes (Basel); 2019 Dec; 11(1):. PubMed ID: 31861495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.