BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31997389)

  • 21. Functionally Annotating Regulatory Elements in the Equine Genome Using Histone Mark ChIP-Seq.
    Kingsley NB; Kern C; Creppe C; Hales EN; Zhou H; Kalbfleisch TS; MacLeod JN; Petersen JL; Finno CJ; Bellone RR
    Genes (Basel); 2019 Dec; 11(1):. PubMed ID: 31861495
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EPIGENE: genome-wide transcription unit annotation using a multivariate probabilistic model of histone modifications.
    Sahu A; Li N; Dunkel I; Chung HR
    Epigenetics Chromatin; 2020 Apr; 13(1):20. PubMed ID: 32264931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vision from next generation sequencing: multi-dimensional genome-wide analysis for producing gene regulatory networks underlying retinal development, aging and disease.
    Yang HJ; Ratnapriya R; Cogliati T; Kim JW; Swaroop A
    Prog Retin Eye Res; 2015 May; 46():1-30. PubMed ID: 25668385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A single-cell guide to retinal development: Cell fate decisions of multipotent retinal progenitors in scRNA-seq.
    Shiau F; Ruzycki PA; Clark BS
    Dev Biol; 2021 Oct; 478():41-58. PubMed ID: 34146533
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation.
    Henikoff S; Henikoff JG; Kaya-Okur HS; Ahmad K
    Elife; 2020 Nov; 9():. PubMed ID: 33191916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TAF-ChIP: an ultra-low input approach for genome-wide chromatin immunoprecipitation assay.
    Akhtar J; More P; Albrecht S; Marini F; Kaiser W; Kulkarni A; Wojnowski L; Fontaine JF; Andrade-Navarro MA; Silies M; Berger C
    Life Sci Alliance; 2019 Aug; 2(4):. PubMed ID: 31331983
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gene regulatory network reconstruction using single-cell RNA sequencing of barcoded genotypes in diverse environments.
    Jackson CA; Castro DM; Saldi GA; Bonneau R; Gresham D
    Elife; 2020 Jan; 9():. PubMed ID: 31985403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. HERON: A Novel Tool Enables Identification of Long, Weakly Enriched Genomic Domains in ChIP-seq Data.
    Macioszek A; Wilczynski B
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CIPHER: a flexible and extensive workflow platform for integrative next-generation sequencing data analysis and genomic regulatory element prediction.
    Guzman C; D'Orso I
    BMC Bioinformatics; 2017 Aug; 18(1):363. PubMed ID: 28789639
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA-seq based transcriptomic map reveals new insights into mouse salivary gland development and maturation.
    Gluck C; Min S; Oyelakin A; Smalley K; Sinha S; Romano RA
    BMC Genomics; 2016 Nov; 17(1):923. PubMed ID: 27852218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data.
    Li G; Fu S; Wang S; Zhu C; Duan B; Tang C; Chen X; Chuai G; Wang P; Liu Q
    Genome Biol; 2022 Jan; 23(1):20. PubMed ID: 35022082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. User-Friendly and Interactive Analysis of ChIP-Seq Data Using EaSeq.
    Lerdrup M; Hansen K
    Methods Mol Biol; 2020; 2117():35-63. PubMed ID: 31960371
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Emerging Regulatory Landscape for Skeletal Development.
    Hojo H; McMahon AP; Ohba S
    Trends Genet; 2016 Dec; 32(12):774-787. PubMed ID: 27814929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome Wide Approaches to Identify Protein-DNA Interactions.
    Ma T; Ye Z; Wang L
    Curr Med Chem; 2019; 26(42):7641-7654. PubMed ID: 29848263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tracking Histone Modifications in Embryos and Low-Input Samples Using Ultrasensitive STAR ChIP-Seq.
    Zhang B; Peng X; Xu F; Xie W
    Methods Mol Biol; 2021; 2214():241-252. PubMed ID: 32944914
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parallel bimodal single-cell sequencing of transcriptome and chromatin accessibility.
    Xing QR; Farran CAE; Zeng YY; Yi Y; Warrier T; Gautam P; Collins JJ; Xu J; Dröge P; Koh CG; Li H; Zhang LF; Loh YH
    Genome Res; 2020 Jul; 30(7):1027-1039. PubMed ID: 32699019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human protein-RNA interaction network is highly stable across mammals.
    Ramakrishnan A; Janga SC
    BMC Genomics; 2019 Dec; 20(Suppl 12):1004. PubMed ID: 31888461
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic transcriptional control of macrophage miRNA signature via inflammation responsive enhancers revealed using a combination of next generation sequencing-based approaches.
    Czimmerer Z; Horvath A; Daniel B; Nagy G; Cuaranta-Monroy I; Kiss M; Kolostyak Z; Poliska S; Steiner L; Giannakis N; Varga T; Nagy L
    Biochim Biophys Acta Gene Regul Mech; 2018 Jan; 1861(1):14-28. PubMed ID: 29133016
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Epigenetic Analysis in Ewing Sarcoma.
    Simon JM; Gomez NC
    Methods Mol Biol; 2021; 2226():285-302. PubMed ID: 33326110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Data generation and network reconstruction strategies for single cell transcriptomic profiles of CRISPR-mediated gene perturbations.
    Holding AN; Cook HV; Markowetz F
    Biochim Biophys Acta Gene Regul Mech; 2020 Jun; 1863(6):194441. PubMed ID: 31756390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.