These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31997389)

  • 41. Xenbase: deep integration of GEO & SRA RNA-seq and ChIP-seq data in a model organism database.
    Fortriede JD; Pells TJ; Chu S; Chaturvedi P; Wang D; Fisher ME; James-Zorn C; Wang Y; Nenni MJ; Burns KA; Lotay VS; Ponferrada VG; Karimi K; Zorn AM; Vize PD
    Nucleic Acids Res; 2020 Jan; 48(D1):D776-D782. PubMed ID: 31733057
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CellWalker integrates single-cell and bulk data to resolve regulatory elements across cell types in complex tissues.
    Przytycki PF; Pollard KS
    Genome Biol; 2021 Feb; 22(1):61. PubMed ID: 33583425
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cancer systems biology in the genome sequencing era: part 1, dissecting and modeling of tumor clones and their networks.
    Wang E; Zou J; Zaman N; Beitel LK; Trifiro M; Paliouras M
    Semin Cancer Biol; 2013 Aug; 23(4):279-85. PubMed ID: 23791722
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chromatin immunoprecipitation from fixed clinical tissues reveals tumor-specific enhancer profiles.
    Cejas P; Li L; O'Neill NK; Duarte M; Rao P; Bowden M; Zhou CW; Mendiola M; Burgos E; Feliu J; Moreno-Rubio J; Guadalajara H; Moreno V; García-Olmo D; Bellmunt J; Mullane S; Hirsch M; Sweeney CJ; Richardson A; Liu XS; Brown M; Shivdasani RA; Long HW
    Nat Med; 2016 Jun; 22(6):685-91. PubMed ID: 27111282
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photoreceptor cell fate specification in vertebrates.
    Brzezinski JA; Reh TA
    Development; 2015 Oct; 142(19):3263-73. PubMed ID: 26443631
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transcriptional networks in the human epididymis.
    Browne JA; Leir SH; Yin S; Harris A
    Andrology; 2019 Sep; 7(5):741-747. PubMed ID: 31050198
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Express: A database of transcriptome profiles encompassing known and novel transcripts across multiple development stages in eye tissues.
    Budak G; Dash S; Srivastava R; Lachke SA; Janga SC
    Exp Eye Res; 2018 Mar; 168():57-68. PubMed ID: 29337142
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Unified Analysis of Multiple ChIP-Seq Datasets.
    Ma G; Babarinde IA; Zhuang Q; Hutchins AP
    Methods Mol Biol; 2021; 2198():451-465. PubMed ID: 32822050
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Integrating Bacterial ChIP-seq and RNA-seq Data With SnakeChunks.
    Rioualen C; Charbonnier-Khamvongsa L; Collado-Vides J; van Helden J
    Curr Protoc Bioinformatics; 2019 Jun; 66(1):e72. PubMed ID: 30786165
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interrogating the Accessible Chromatin Landscape of Eukaryote Genomes Using ATAC-seq.
    Marinov GK; Shipony Z
    Methods Mol Biol; 2021; 2243():183-226. PubMed ID: 33606259
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single Cell Omics for Musculoskeletal Research.
    Rai MF; Wu CL; Capellini TD; Guilak F; Dicks AR; Muthuirulan P; Grandi F; Bhutani N; Westendorf JJ
    Curr Osteoporos Rep; 2021 Apr; 19(2):131-140. PubMed ID: 33559841
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Building a Mammalian Retina: An Eye on Chromatin Structure.
    Daghsni M; Aldiri I
    Front Genet; 2021; 12():775205. PubMed ID: 34764989
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A single ChIP-seq dataset is sufficient for comprehensive analysis of motifs co-occurrence with MCOT package.
    Levitsky V; Zemlyanskaya E; Oshchepkov D; Podkolodnaya O; Ignatieva E; Grosse I; Mironova V; Merkulova T
    Nucleic Acids Res; 2019 Dec; 47(21):e139. PubMed ID: 31750523
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Systems biology of embryonic development: Prospects for a complete understanding of the Caenorhabditis elegans embryo.
    Murray JI
    Wiley Interdiscip Rev Dev Biol; 2018 May; 7(3):e314. PubMed ID: 29369536
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Step-by-Step Construction of Gene Co-expression Networks from High-Throughput Arabidopsis RNA Sequencing Data.
    Contreras-López O; Moyano TC; Soto DC; Gutiérrez RA
    Methods Mol Biol; 2018; 1761():275-301. PubMed ID: 29525965
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mapping gene regulatory networks in Drosophila eye development by large-scale transcriptome perturbations and motif inference.
    Potier D; Davie K; Hulselmans G; Naval Sanchez M; Haagen L; Huynh-Thu VA; Koldere D; Celik A; Geurts P; Christiaens V; Aerts S
    Cell Rep; 2014 Dec; 9(6):2290-303. PubMed ID: 25533349
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development.
    Kurian L; Aguirre A; Sancho-Martinez I; Benner C; Hishida T; Nguyen TB; Reddy P; Nivet E; Krause MN; Nelles DA; Esteban CR; Campistol JM; Yeo GW; Belmonte JCI
    Circulation; 2015 Apr; 131(14):1278-1290. PubMed ID: 25739401
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Advances in assay for transposase-accessible chromatin with high-throughput sequencing].
    Wu J; Quan JP; Ye Y; Wu ZF; Yang J; Yang M; Zheng EQ
    Yi Chuan; 2020 Apr; 42(4):333-346. PubMed ID: 32312702
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A systems biology framework integrating GWAS and RNA-seq to shed light on the molecular basis of sperm quality in swine.
    Gòdia M; Reverter A; González-Prendes R; Ramayo-Caldas Y; Castelló A; Rodríguez-Gil JE; Sánchez A; Clop A
    Genet Sel Evol; 2020 Dec; 52(1):72. PubMed ID: 33292187
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cell-intrinsic regulators of proliferation in vertebrate retinal progenitors.
    Levine EM; Green ES
    Semin Cell Dev Biol; 2004 Feb; 15(1):63-74. PubMed ID: 15036209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.