BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 31997574)

  • 1. A machine learning approach for handling big data produced by high resolution mass spectrometry after data independent acquisition of small molecules - Proof of concept study using an artificial neural network for sample classification.
    Streun GL; Elmiger MP; Dobay A; Ebert L; Kraemer T
    Drug Test Anal; 2020 Jun; 12(6):836-845. PubMed ID: 31997574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpretable machine learning model to detect chemically adulterated urine samples analyzed by high resolution mass spectrometry.
    Streun GL; Steuer AE; Ebert LC; Dobay A; Kraemer T
    Clin Chem Lab Med; 2021 Jul; 59(8):1392-1399. PubMed ID: 33742969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning combined with non-targeted LC-HRMS analysis for a risk warning system of chemical hazards in drinking water: A proof of concept.
    Samanipour S; Kaserzon S; Vijayasarathy S; Jiang H; Choi P; Reid MJ; Mueller JF; Thomas KV
    Talanta; 2019 Apr; 195():426-432. PubMed ID: 30625565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening and identification of unknown chemical contaminants in food based on liquid chromatography-high-resolution mass spectrometry and machine learning.
    Chen T; Liang W; Zhang X; Wang Y; Lu X; Zhang Y; Zhang Z; You L; Liu X; Zhao C; Xu G
    Anal Chim Acta; 2024 Jan; 1287():342116. PubMed ID: 38182389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cumulative learning enables convolutional neural network representations for small mass spectrometry data classification.
    Seddiki K; Saudemont P; Precioso F; Ogrinc N; Wisztorski M; Salzet M; Fournier I; Droit A
    Nat Commun; 2020 Nov; 11(1):5595. PubMed ID: 33154370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a sensitive untargeted liquid chromatography-high resolution mass spectrometry screening devoted to hair analysis through a shared MS2 spectra database: A step toward early detection of new psychoactive substances.
    Fabresse N; Larabi IA; Stratton T; Mistrik R; Pfau G; Lorin de la Grandmaison G; Etting I; Grassin Delyle S; Alvarez JC
    Drug Test Anal; 2019 May; 11(5):697-708. PubMed ID: 30394697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Interpretation of Blood Culture Gram Stains by Use of a Deep Convolutional Neural Network.
    Smith KP; Kang AD; Kirby JE
    J Clin Microbiol; 2018 Mar; 56(3):. PubMed ID: 29187563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A big data approach with artificial neural network and molecular similarity for chemical data mining and endocrine disruption prediction.
    Paulose R; Jegatheesan K; Balakrishnan GS
    Indian J Pharmacol; 2018; 50(4):169-176. PubMed ID: 30505052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning in Laryngoscopy Analysis: A Proof of Concept Observational Study for the Identification of Post-Extubation Ulcerations and Granulomas.
    Parker F; Brodsky MB; Akst LM; Ali H
    Ann Otol Rhinol Laryngol; 2021 Mar; 130(3):286-291. PubMed ID: 32795159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applying 'Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra' (SWATH) for systematic toxicological analysis with liquid chromatography-high-resolution tandem mass spectrometry.
    Arnhard K; Gottschall A; Pitterl F; Oberacher H
    Anal Bioanal Chem; 2015 Jan; 407(2):405-14. PubMed ID: 25366975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted and non-targeted drug screening in whole blood by UHPLC-TOF-MS with data-independent acquisition.
    Mollerup CB; Dalsgaard PW; Mardal M; Linnet K
    Drug Test Anal; 2017 Jul; 9(7):1052-1061. PubMed ID: 27750404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of liquid chromatography-high-resolution mass spectrometry (LC-HR/MS) in clinical toxicology.
    Wu AH; Gerona R; Armenian P; French D; Petrie M; Lynch KL
    Clin Toxicol (Phila); 2012 Sep; 50(8):733-42. PubMed ID: 22888997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General unknown screening in hair by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS).
    Broecker S; Herre S; Pragst F
    Forensic Sci Int; 2012 May; 218(1-3):68-81. PubMed ID: 22036310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning in Mass Spectrometric Analysis of DIA Data.
    Xu LL; Young A; Zhou A; Röst HL
    Proteomics; 2020 Nov; 20(21-22):e1900352. PubMed ID: 32061181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization and Validation of High-Resolution Mass Spectrometry Data Analysis Parameters.
    Colby JM; Thoren KL; Lynch KL
    J Anal Toxicol; 2017 Jan; 41(1):1-5. PubMed ID: 28130542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drugs of abuse screening in urine as part of a metabolite-based LC-MSn screening concept.
    Wissenbach DK; Meyer MR; Remane D; Philipp AA; Weber AA; Maurer HH
    Anal Bioanal Chem; 2011 Jul; 400(10):3481-9. PubMed ID: 21533799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Neural Network Pretrained by Weighted Autoencoders and Transfer Learning for Retention Time Prediction of Small Molecules.
    Ju R; Liu X; Zheng F; Lu X; Xu G; Lin X
    Anal Chem; 2021 Nov; 93(47):15651-15658. PubMed ID: 34780148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SWATH data independent acquisition mass spectrometry for screening of xenobiotics in biological fluids: Opportunities and challenges for data processing.
    Klont F; Jahn S; Grivet C; König S; Bonner R; Hopfgartner G
    Talanta; 2020 May; 211():120747. PubMed ID: 32070597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards compound identification of synthetic opioids in nontargeted screening using machine learning techniques.
    Klingberg J; Cawley A; Shimmon R; Fu S
    Drug Test Anal; 2021 May; 13(5):990-1000. PubMed ID: 33207086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization and Comparison of Information-Dependent Acquisition (IDA) to Sequential Window Acquisition of All Theoretical Fragment Ion Spectra (SWATH) for High-Resolution Mass Spectrometry in Clinical Toxicology.
    Whitman JD; Lynch KL
    Clin Chem; 2019 Jul; 65(7):862-870. PubMed ID: 30996055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.