BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

644 related articles for article (PubMed ID: 31997589)

  • 21. Role of virtual reality in congenital heart disease.
    Ong CS; Krishnan A; Huang CY; Spevak P; Vricella L; Hibino N; Garcia JR; Gaur L
    Congenit Heart Dis; 2018 May; 13(3):357-361. PubMed ID: 29399969
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Innovations in Preoperative Planning: Insights into Another Dimension Using 3D Printing for Cardiac Disease.
    Farooqi KM; Mahmood F
    J Cardiothorac Vasc Anesth; 2018 Aug; 32(4):1937-1945. PubMed ID: 29277300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D printing and modeling of congenital heart defects: A technical review.
    Townsend K; Pietila T
    Birth Defects Res; 2018 Aug; 110(13):1091-1097. PubMed ID: 30063112
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uses of a dedicated 3D reconstruction software with augmented and mixed reality in planning and performing advanced liver surgery and living donor liver transplantation (with videos).
    Balci D; Kirimker EO; Raptis DA; Gao Y; Kow AWC
    Hepatobiliary Pancreat Dis Int; 2022 Oct; 21(5):455-461. PubMed ID: 36123242
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immersive Three-Dimensional Modeling and Virtual Reality for Enhanced Visualization of Operative Neurosurgical Anatomy.
    Tomlinson SB; Hendricks BK; Cohen-Gadol A
    World Neurosurg; 2019 Nov; 131():313-320. PubMed ID: 31658575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D-printed models and virtual reality as new tools for image-guided robot-assisted nephron-sparing surgery: a systematic review of the newest evidences.
    Checcucci E; De Cillis S; Porpiglia F
    Curr Opin Urol; 2020 Jan; 30(1):55-64. PubMed ID: 31725000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional technologies in presurgical planning of bone surgeries: current evidence and future perspectives.
    Portnoy Y; Koren J; Khoury A; Factor S; Dadia S; Ran Y; Benady A
    Int J Surg; 2023 Jan; 109(1):3-10. PubMed ID: 36799780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combining Augmented Reality and 3D Printing to Improve Surgical Workflows in Orthopedic Oncology: Smartphone Application and Clinical Evaluation.
    Moreta-Martinez R; Pose-Díez-de-la-Lastra A; Calvo-Haro JA; Mediavilla-Santos L; Pérez-Mañanes R; Pascau J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An augmented reality system for image guidance of transcatheter procedures for structural heart disease.
    Liu J; Al'Aref SJ; Singh G; Caprio A; Moghadam AAA; Jang SJ; Wong SC; Min JK; Dunham S; Mosadegh B
    PLoS One; 2019; 14(7):e0219174. PubMed ID: 31260497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Virtual, augmented, and mixed reality applications in orthopedic surgery.
    Verhey JT; Haglin JM; Verhey EM; Hartigan DE
    Int J Med Robot; 2020 Apr; 16(2):e2067. PubMed ID: 31867864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visualization of 3D Models Through Virtual Reality in the Planning of Congenital Cardiothoracic Anomalies Correction: An Initial Experience.
    Ayerbe VMC; Morales MLV; Rojas CJL; Cortés MLA
    World J Pediatr Congenit Heart Surg; 2020 Sep; 11(5):627-629. PubMed ID: 32853059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RE: 3D Printing, Augmented Reality, and Virtual Reality for the Assessment and Management of Kidney and Prostate Cancer: A Systematic Review.
    Shirk JD
    Urology; 2020 Nov; 145():301. PubMed ID: 32916192
    [No Abstract]   [Full Text] [Related]  

  • 33. Evaluation of the 3D Augmented Reality-Guided Intraoperative Positioning of Dental Implants in Edentulous Mandibular Models.
    Jiang W; Ma L; Zhang B; Fan Y; Qu X; Zhang X; Liao H
    Int J Oral Maxillofac Implants; 2018; 33(6):1219-1228. PubMed ID: 30427952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Virtual Reality Angiogram vs 3-Dimensional Printed Angiogram as an Educational tool-A Comparative Study.
    Bairamian D; Liu S; Eftekhar B
    Neurosurgery; 2019 Aug; 85(2):E343-E349. PubMed ID: 30715444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Author Reply: 3D Printing, Augmented Reality, and Virtual Reality for the Assessment and Management of Kidney and Prostate Cancer: A Systematic Review.
    Wake N; Bjurlin MA
    Urology; 2020 Nov; 145():301-302. PubMed ID: 32866508
    [No Abstract]   [Full Text] [Related]  

  • 36. Combined use of 3D printing and mixed reality technology for neurosurgical training: getting ready for brain surgery.
    Jeising S; Liu S; Blaszczyk T; Rapp M; Beez T; Cornelius JF; Schwerter M; Sabel M
    Neurosurg Focus; 2024 Jan; 56(1):E12. PubMed ID: 38163360
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accurate Mandible Reconstruction by Mixed Reality, 3D Printing, and Robotic-Assisted Navigation Integration.
    Han JJ; Sodnom-Ish B; Eo MY; Kim YJ; Oh JH; Yang HJ; Kim SM
    J Craniofac Surg; 2022 Sep; 33(6):e701-e706. PubMed ID: 35240669
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extended reality for procedural planning and guidance in structural heart disease - a review of the state-of-the-art.
    Stephenson N; Pushparajah K; Wheeler G; Deng S; Schnabel JA; Simpson JM
    Int J Cardiovasc Imaging; 2023 Jul; 39(7):1405-1419. PubMed ID: 37103667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Views on Augmented Reality, Virtual Reality, and 3D Printing in Modern Medicine and Education: A Qualitative Exploration of Expert Opinion.
    Urlings J; de Jong G; Maal T; Henssen D
    J Digit Imaging; 2023 Aug; 36(4):1930-1939. PubMed ID: 37162654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional Printing and Augmented Reality: Enhanced Precision for Robotic Assisted Partial Nephrectomy.
    Wake N; Bjurlin MA; Rostami P; Chandarana H; Huang WC
    Urology; 2018 Jun; 116():227-228. PubMed ID: 29801927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.