BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31997675)

  • 1. Differential localization of voltage-gated potassium channels during
    Werner J; Arian J; Bernhardt I; Ryglewski S; Duch C
    J Neurogenet; 2020 Mar; 34(1):133-150. PubMed ID: 31997675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RT-PCR analysis of shaker, shab, shaw, and shal gene expression in single neurons and glial cells.
    Baro DJ; Cole CL; Harris-Warrick RM
    Recept Channels; 1996; 4(3):149-59. PubMed ID: 9014238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shal and shaker differential contribution to the K+ currents in the Drosophila mushroom body neurons.
    Gasque G; Labarca P; Reynaud E; Darszon A
    J Neurosci; 2005 Mar; 25(9):2348-58. PubMed ID: 15745961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shaker and Shal mediate transient calcium-independent potassium current in a Drosophila flight motoneuron.
    Ryglewski S; Duch C
    J Neurophysiol; 2009 Dec; 102(6):3673-88. PubMed ID: 19828724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential contributions of Shaker and Shab K+ currents to neuronal firing patterns in Drosophila.
    Peng IF; Wu CF
    J Neurophysiol; 2007 Jan; 97(1):780-94. PubMed ID: 17079336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postnatal Increases in Axonal Conduction Velocity of an Identified
    Kadas D; Duch C; Consoulas C
    eNeuro; 2019; 6(4):. PubMed ID: 31253715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage sensitivity and gating charge in Shaker and Shab family potassium channels.
    Islas LD; Sigworth FJ
    J Gen Physiol; 1999 Nov; 114(5):723-42. PubMed ID: 10539976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presynaptic recordings from Drosophila: correlation of macroscopic and single-channel K+ currents.
    Martínez-Padrón M; Ferrús A
    J Neurosci; 1997 May; 17(10):3412-24. PubMed ID: 9133367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanded functional diversity of shaker K(+) channels in cnidarians is driven by gene expansion.
    Jegla T; Marlow HQ; Chen B; Simmons DK; Jacobo SM; Martindale MQ
    PLoS One; 2012; 7(12):e51366. PubMed ID: 23251506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Major diversification of voltage-gated K+ channels occurred in ancestral parahoxozoans.
    Li X; Liu H; Chu Luo J; Rhodes SA; Trigg LM; van Rossum DB; Anishkin A; Diatta FH; Sassic JK; Simmons DK; Kamel B; Medina M; Martindale MQ; Jegla T
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):E1010-9. PubMed ID: 25691740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Why the Drosophila Shaker K+ channel is not a good model for ligand binding to voltage-gated Kv1 channels.
    Mahdavi S; Kuyucak S
    Biochemistry; 2013 Mar; 52(9):1631-40. PubMed ID: 23398369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic analysis of Drosophila neurons: Shal, Shaw, and Shab encode most embryonic potassium currents.
    Tsunoda S; Salkoff L
    J Neurosci; 1995 Mar; 15(3 Pt 1):1741-54. PubMed ID: 7891132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related changes in Kv4/Shal and Kv1/Shaker expression in Drosophila and a role for reactive oxygen species.
    Vallejos MJ; Eadaim A; Hahm ET; Tsunoda S
    PLoS One; 2021; 16(12):e0261087. PubMed ID: 34932577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct frequency-dependent regulation of nerve terminal excitability and synaptic transmission by IA and IK potassium channels revealed by Drosophila Shaker and Shab mutations.
    Ueda A; Wu CF
    J Neurosci; 2006 Jun; 26(23):6238-48. PubMed ID: 16763031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shaw and Shal voltage-gated potassium channels mediate circadian changes in Drosophila clock neuron excitability.
    Smith P; Buhl E; Tsaneva-Atanasova K; Hodge JJL
    J Physiol; 2019 Dec; 597(23):5707-5722. PubMed ID: 31612994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subunit-dependent axonal trafficking of distinct alpha heteromeric potassium channel complexes.
    Jenkins PM; McIntyre JC; Zhang L; Anantharam A; Vesely ED; Arendt KL; Carruthers CJ; Kerppola TK; Iñiguez-Lluhí JA; Holz RW; Sutton MA; Martens JR
    J Neurosci; 2011 Sep; 31(37):13224-35. PubMed ID: 21917805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of voltage-dependent K(+) channel genes in mesenteric artery smooth muscle cells.
    Xu C; Lu Y; Tang G; Wang R
    Am J Physiol; 1999 Nov; 277(5):G1055-63. PubMed ID: 10564112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Susceptibility of cloned K+ channels to reactive oxygen species.
    Duprat F; Guillemare E; Romey G; Fink M; Lesage F; Lazdunski M; Honore E
    Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11796-800. PubMed ID: 8524851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential distribution of Shaker-like and Shab-like K+-channel subunits in goldfish retina and retinal bipolar cells.
    Yazulla S; Studholme KM
    J Comp Neurol; 1998 Jun; 396(1):131-40. PubMed ID: 9623892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunohistochemical localization of five members of the Kv1 channel subunits: contrasting subcellular locations and neuron-specific co-localizations in rat brain.
    Veh RW; Lichtinghagen R; Sewing S; Wunder F; Grumbach IM; Pongs O
    Eur J Neurosci; 1995 Nov; 7(11):2189-205. PubMed ID: 8563969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.