These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31997850)

  • 1. A theoretical and computational framework for studying creep crack growth.
    Elmukashfi E; Cocks ACF
    Int J Fract; 2017; 208(1):145-170. PubMed ID: 31997850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete analytical solutions for double cantilever beam specimens with bi-linear quasi-brittle and brittle interfaces.
    Škec L; Alfano G; Jelenić G
    Int J Fract; 2019; 215(1):1-37. PubMed ID: 30872889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Curve Fitting for Damage Evolution through Regression Analysis for the Kachanov-Rabotnov Model to the Norton-Bailey Creep Law of SS-316 Material.
    Sattar M; Othman AR; Akhtar M; Kamaruddin S; Khan R; Masood F; Alam MA; Azeem M; Mohsin S
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creep Crack Growth Behavior during Hot Water Immersion of an Epoxy Adhesive Using a Spring-Loaded Double Cantilever Beam Test Method.
    Nakamura K; Sekiguchi Y; Shimamoto K; Houjou K; Akiyama H; Sato C
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unified transient creep constitutive model based on the crack evolution of micritic bioclastic limestone.
    Mo Z; Qian L; Yao T; Gao Y; Xue F; Zhang J; Zhang R; Liu E
    PLoS One; 2022; 17(10):e0276100. PubMed ID: 36301876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling Cyclic Crack Propagation in Concrete Using the Scaled Boundary Finite Element Method Coupled with the Cumulative Damage-Plasticity Constitutive Law.
    Alrayes O; Könke C; Ooi ET; Hamdia KM
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element modeling of damage accumulation in trabecular bone under cyclic loading.
    Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ
    J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Concise Binomial Model for Nonlinear Creep-Fatigue Crack Growth Behavior at Elevated Temperatures.
    Mao J; Xiao Z; Hu D; Guo X; Wang R
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite Element Analysis of Crack Propagation in Adhesive Joints with Notched Adherends.
    Qureshi A; Guan T; Alfano M
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation analysis of the evolution law of creep rupture crack extension in X-fractured rock body.
    Zhao N; Wei S; Wang L; Sun J
    Sci Rep; 2024 Jun; 14(1):14843. PubMed ID: 38937648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of
    Katinić M; Turk D; Konjatić P; Kozak D
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creep contributes to the fatigue behavior of bovine trabecular bone.
    Bowman SM; Guo XE; Cheng DW; Keaveny TM; Gibson LJ; Hayes WC; McMahon TA
    J Biomech Eng; 1998 Oct; 120(5):647-54. PubMed ID: 10412444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Hybrid Finite Volume and Extended Finite Element Method for Hydraulic Fracturing with Cohesive Crack Propagation in Quasi-Brittle Materials.
    Liu C; Shen Z; Gan L; Jin T; Zhang H; Liu D
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30304867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New perspective of fracture mechanics inspired by gap test with crack-parallel compression.
    Nguyen H; Pathirage M; Rezaei M; Issa M; Cusatis G; Bažant ZP
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):14015-14020. PubMed ID: 32518106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue fracture of the stem-cement interface with a clamped cantilever beam test.
    Heuer DA; Mann KA
    J Biomech Eng; 2000 Dec; 122(6):647-51. PubMed ID: 11192387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Particle-Based Cohesive Crack Model for Brittle Fracture Problems.
    Chen H; Zhang YX; Zhu L; Xiong F; Liu J; Gao W
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32823584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring the Cohesive Law in Mode I Loading of
    Majano-Majano A; Lara-Bocanegra AJ; Xavier J; Morais J
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30577617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Mechanism of Creep during Crack Propagation of a Superalloy under Fatigue-Creep-Environment Interactions.
    Wang M; Du J; Deng Q
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33020419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mode I Interlaminar Fracture of Glass/Epoxy Unidirectional Laminates. Part II: Numerical Analysis.
    Gliszczynski A; Samborski S; Wiacek N; Rzeczkowski J
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31100811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of bioinspired non-interlocking geometrically patterned interfaces under predominant mode I loading.
    Hosseini MS; Cordisco FA; Zavattieri PD
    J Mech Behav Biomed Mater; 2019 Aug; 96():244-260. PubMed ID: 31075746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.