These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 31998074)

  • 1. Internal Clocks, mGluR7 and Microtubules: A Primer for the Molecular Encoding of Target Durations in Cerebellar Purkinje Cells and Striatal Medium Spiny Neurons.
    Yousefzadeh SA; Hesslow G; Shumyatsky GP; Meck WH
    Front Mol Neurosci; 2019; 12():321. PubMed ID: 31998074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactive roles of the cerebellum and striatum in sub-second and supra-second timing: Support for an initiation, continuation, adjustment, and termination (ICAT) model of temporal processing.
    Petter EA; Lusk NA; Hesslow G; Meck WH
    Neurosci Biobehav Rev; 2016 Dec; 71():739-755. PubMed ID: 27773690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bidirectional role of microtubule dynamics in the acquisition and maintenance of temporal information in dorsolateral striatum.
    Yousefzadeh SA; Youngkin AE; Lusk NA; Wen S; Meck WH
    Neurobiol Learn Mem; 2021 Sep; 183():107468. PubMed ID: 34058346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic Plasticity of Cerebellar Purkinje Cells Contributes to Motor Memory Consolidation.
    Jang DC; Shim HG; Kim SJ
    J Neurosci; 2020 May; 40(21):4145-4157. PubMed ID: 32295816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biochemical mechanism for time-encoding memory formation within individual synapses of Purkinje cells.
    Mandwal A; Orlandi JG; Simon C; Davidsen J
    PLoS One; 2021; 16(5):e0251172. PubMed ID: 33961660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Engram's Dark Horse: How Interneurons Regulate State-Dependent Memory Processing and Plasticity.
    Raven F; Aton SJ
    Front Neural Circuits; 2021; 15():750541. PubMed ID: 34588960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of the dynamics of cerebellar Purkinje cells through the interaction of excitatory and inhibitory feedforward pathways.
    Tang Y; An L; Yuan Y; Pei Q; Wang Q; Liu JK
    PLoS Comput Biol; 2021 Feb; 17(2):e1008670. PubMed ID: 33566820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal Information Processing in the Cerebellum and Basal Ganglia.
    Tanaka M; Kameda M; Okada KI
    Adv Exp Med Biol; 2024; 1455():95-116. PubMed ID: 38918348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complementary cognitive roles for D2-MSNs and D1-MSNs during interval timing.
    Bruce R; Weber MA; Bova A; Volkman R; Jacobs C; Sivakumar K; Kim Y; Curtu R; Narayanan N
    bioRxiv; 2024 Sep; ():. PubMed ID: 37546735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Cellular Electrophysiological Properties Underlying Multiplexed Coding in Purkinje Cells.
    Zang Y; De Schutter E
    J Neurosci; 2021 Mar; 41(9):1850-1863. PubMed ID: 33452223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity.
    Antonietti A; Casellato C; D'Angelo E; Pedrocchi A
    IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2748-2762. PubMed ID: 27608482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rodent Medial Frontal Control of Temporal Processing in the Dorsomedial Striatum.
    Emmons EB; De Corte BJ; Kim Y; Parker KL; Matell MS; Narayanan NS
    J Neurosci; 2017 Sep; 37(36):8718-8733. PubMed ID: 28821670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. STIM1 Regulates Somatic Ca
    Ryu C; Jang DC; Jung D; Kim YG; Shim HG; Ryu HH; Lee YS; Linden DJ; Worley PF; Kim SJ
    J Neurosci; 2017 Sep; 37(37):8876-8894. PubMed ID: 28821659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Emerging Concept of Intrinsic Plasticity: Activity-dependent Modulation of Intrinsic Excitability in Cerebellar Purkinje Cells and Motor Learning.
    Shim HG; Lee YS; Kim SJ
    Exp Neurobiol; 2018 Jun; 27(3):139-154. PubMed ID: 30022866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-Term Plasticity Combines with Excitation-Inhibition Balance to Expand Cerebellar Purkinje Cell Dynamic Range.
    Grangeray-Vilmint A; Valera AM; Kumar A; Isope P
    J Neurosci; 2018 May; 38(22):5153-5167. PubMed ID: 29720550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spike-timing dependent plasticity in the striatum.
    Fino E; Venance L
    Front Synaptic Neurosci; 2010; 2():6. PubMed ID: 21423492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deceivingly dynamic: Learning-dependent changes in stathmin and microtubules.
    Uchida S; Shumyatsky GP
    Neurobiol Learn Mem; 2015 Oct; 124():52-61. PubMed ID: 26211874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective Vulnerability of Striatal D2 versus D1 Dopamine Receptor-Expressing Medium Spiny Neurons in HIV-1 Tat Transgenic Male Mice.
    Schier CJ; Marks WD; Paris JJ; Barbour AJ; McLane VD; Maragos WF; McQuiston AR; Knapp PE; Hauser KF
    J Neurosci; 2017 Jun; 37(23):5758-5769. PubMed ID: 28473642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experience-related enhancements in striatal temporal encoding.
    Bruce RA; Weber MA; Volkman RA; Oya M; Emmons EB; Kim Y; Narayanan NS
    Eur J Neurosci; 2021 Aug; 54(3):5063-5074. PubMed ID: 34097793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.