BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 31998138)

  • 1. Inertial Measurement Unit-Based Estimation of Foot Trajectory for Clinical Gait Analysis.
    Hori K; Mao Y; Ono Y; Ora H; Hirobe Y; Sawada H; Inaba A; Orimo S; Miyake Y
    Front Physiol; 2019; 10():1530. PubMed ID: 31998138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Foot Trajectory and Stride Length during Level Ground Running Using Foot-Mounted Inertial Measurement Units.
    Suzuki Y; Hahn ME; Enomoto Y
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of foot placement and its variability with inertial sensors.
    Rebula JR; Ojeda LV; Adamczyk PG; Kuo AD
    Gait Posture; 2013 Sep; 38(4):974-80. PubMed ID: 23810335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy validation of a wearable IMU-based gait analysis in healthy female.
    He Y; Chen Y; Tang L; Chen J; Tang J; Yang X; Su S; Zhao C; Xiao N
    BMC Sports Sci Med Rehabil; 2024 Jan; 16(1):2. PubMed ID: 38167148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional continuous gait trajectory estimation using single Shank-Worn inertial measurement units and clinical walk test application.
    Uchitomi H; Hirobe Y; Miyake Y
    Sci Rep; 2022 Mar; 12(1):5368. PubMed ID: 35354893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validity and repeatability of inertial measurement units for measuring gait parameters.
    Washabaugh EP; Kalyanaraman T; Adamczyk PG; Claflin ES; Krishnan C
    Gait Posture; 2017 Jun; 55():87-93. PubMed ID: 28433867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatio-temporal gait analysis in children with cerebral palsy using, foot-worn inertial sensors.
    Brégou Bourgeois A; Mariani B; Aminian K; Zambelli PY; Newman CJ
    Gait Posture; 2014; 39(1):436-42. PubMed ID: 24044970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot.
    Kitagawa N; Ogihara N
    Gait Posture; 2016 Mar; 45():110-4. PubMed ID: 26979891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait and Axial Spondyloarthritis: Comparative Gait Analysis Study Using Foot-Worn Inertial Sensors.
    Soulard J; Vaillant J; Baillet A; Gaudin P; Vuillerme N
    JMIR Mhealth Uhealth; 2021 Nov; 9(11):e27087. PubMed ID: 34751663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Different Algorithms for Calculating Velocity and Stride Length in Running Using Inertial Measurement Units.
    Zrenner M; Gradl S; Jensen U; Ullrich M; Eskofier BM
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30513595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smoother-Based 3-D Foot Trajectory Estimation Using Inertial Sensors.
    Hao M; Chen K; Fu C
    IEEE Trans Biomed Eng; 2019 Dec; 66(12):3534-3542. PubMed ID: 30932822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of IMU Design on IMU-Derived Stride Metrics for Running.
    Potter MV; Ojeda LV; Perkins NC; Cain SM
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31181688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of spatio-temporal parameters of gait from magneto-inertial measurement units: multicenter validation among Parkinson, mildly cognitively impaired and healthy older adults.
    Bertoli M; Cereatti A; Trojaniello D; Avanzino L; Pelosin E; Del Din S; Rochester L; Ginis P; Bekkers EMJ; Mirelman A; Hausdorff JM; Della Croce U
    Biomed Eng Online; 2018 May; 17(1):58. PubMed ID: 29739456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of stride-by-stride spatial gait parameters using inertial measurement unit attached to the shank with inverted pendulum model.
    Mao Y; Ogata T; Ora H; Tanaka N; Miyake Y
    Sci Rep; 2021 Jan; 11(1):1391. PubMed ID: 33446858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A practical step length algorithm using lower limb angular velocities.
    Allseits E; Agrawal V; Lučarević J; Gailey R; Gaunaurd I; Bennett C
    J Biomech; 2018 Jan; 66():137-144. PubMed ID: 29198369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic characterization of stride parameters in canines with a single wearable inertial sensor.
    Jenkins GJ; Hakim CH; Yang NN; Yao G; Duan D
    PLoS One; 2018; 13(6):e0198893. PubMed ID: 29902280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does Site Matter? Impact of Inertial Measurement Unit Placement on the Validity and Reliability of Stride Variables During Running: A Systematic Review and Meta-analysis.
    Horsley BJ; Tofari PJ; Halson SL; Kemp JG; Dickson J; Maniar N; Cormack SJ
    Sports Med; 2021 Jul; 51(7):1449-1489. PubMed ID: 33761128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of stride length in level walking using an inertial measurement unit attached to the foot: a validation of the zero velocity assumption during stance.
    Peruzzi A; Della Croce U; Cereatti A
    J Biomech; 2011 Jul; 44(10):1991-4. PubMed ID: 21601860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability and concurrent validity of spatiotemporal stride characteristics measured with an ankle-worn sensor among older individuals.
    Rantalainen T; Pirkola H; Karavirta L; Rantanen T; Linnamo V
    Gait Posture; 2019 Oct; 74():33-39. PubMed ID: 31442820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calibration-Free Gait Assessment by Foot-Worn Inertial Sensors.
    Laidig D; Jocham AJ; Guggenberger B; Adamer K; Fischer M; Seel T
    Front Digit Health; 2021; 3():736418. PubMed ID: 34806077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.