These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
429 related articles for article (PubMed ID: 31998138)
21. Validity of an inertial sensor-based system for the assessment of spatio-temporal parameters in people with multiple sclerosis. Zahn A; Koch V; Schreff L; Oschmann P; Winkler J; Gaßner H; Müller R Front Neurol; 2023; 14():1164001. PubMed ID: 37153677 [TBL] [Abstract][Full Text] [Related]
22. Inertial sensors for gait monitoring and design of adaptive controllers for exoskeletons after stroke: a feasibility study. De Miguel-Fernández J; Salazar-Del Rio M; Rey-Prieto M; Bayón C; Guirao-Cano L; Font-Llagunes JM; Lobo-Prat J Front Bioeng Biotechnol; 2023; 11():1208561. PubMed ID: 37744246 [No Abstract] [Full Text] [Related]
23. Validation of an algorithm to assess regular and irregular gait using inertial sensors in healthy and stroke individuals. Ensink C; Smulders K; Warnar J; Keijsers N PeerJ; 2023; 11():e16641. PubMed ID: 38111664 [TBL] [Abstract][Full Text] [Related]
24. Can inertial measurement unit sensors evaluate foot kinematics in drop foot patients using functional electrical stimulation? d'Andrea F; Taylor P; Yang K; Heller B Front Hum Neurosci; 2023; 17():1225086. PubMed ID: 38021225 [TBL] [Abstract][Full Text] [Related]
25. A multi-segment modelling approach for foot trajectory estimation using inertial sensors. Okkalidis N; Marinakis G; Gatt A; Bugeja MK; Camilleri KP; Falzon O Gait Posture; 2020 Jan; 75():22-27. PubMed ID: 31590066 [TBL] [Abstract][Full Text] [Related]
26. Stance and Swing Detection Based on the Angular Velocity of Lower Limb Segments During Walking. Grimmer M; Schmidt K; Duarte JE; Neuner L; Koginov G; Riener R Front Neurorobot; 2019; 13():57. PubMed ID: 31396072 [TBL] [Abstract][Full Text] [Related]
27. Accuracy Verification of Spatio-Temporal and Kinematic Parameters for Gait Using Inertial Measurement Unit System. Yeo SS; Park GY Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121456 [TBL] [Abstract][Full Text] [Related]
28. Automatic Body Segment and Side Recognition of an Inertial Measurement Unit Sensor during Gait. Baniasad M; Martin R; Crevoisier X; Pichonnaz C; Becce F; Aminian K Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050647 [TBL] [Abstract][Full Text] [Related]
29. PI-Sole: A Low-Cost Solution for Gait Monitoring Using Off-The-Shelf Piezoelectric Sensors and IMU. Chandel V; Singhal S; Sharma V; Ahmed N; Ghose A Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3290-3296. PubMed ID: 31946586 [TBL] [Abstract][Full Text] [Related]
30. Validity of Spatio-Temporal Gait Parameters in Healthy Young Adults Using a Motion-Sensor-Based Gait Analysis System (ORPHE ANALYTICS) during Walking and Running. Uno Y; Ogasawara I; Konda S; Yoshida N; Otsuka N; Kikukawa Y; Tsujii A; Nakata K Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616928 [TBL] [Abstract][Full Text] [Related]
31. Gait evaluation using inertial measurement units in subjects with Parkinson's disease. Zago M; Sforza C; Pacifici I; Cimolin V; Camerota F; Celletti C; Condoluci C; De Pandis MF; Galli M J Electromyogr Kinesiol; 2018 Oct; 42():44-48. PubMed ID: 29940494 [TBL] [Abstract][Full Text] [Related]
32. Estimation of Walking Speed and Its Spatiotemporal Determinants Using a Single Inertial Sensor Worn on the Thigh: From Healthy to Hemiparetic Walking. Arumukhom Revi D; De Rossi SMM; Walsh CJ; Awad LN Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770283 [TBL] [Abstract][Full Text] [Related]
33. Validity Evaluation of an Inertial Measurement Unit (IMU) in Gait Analysis Using Statistical Parametric Mapping (SPM). Park S; Yoon S Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070344 [TBL] [Abstract][Full Text] [Related]
34. Wearable inertial sensors provide reliable biomarkers of disease severity in multiple sclerosis: A systematic review and meta-analysis. Vienne-Jumeau A; Quijoux F; Vidal PP; Ricard D Ann Phys Rehabil Med; 2020 Mar; 63(2):138-147. PubMed ID: 31421274 [TBL] [Abstract][Full Text] [Related]
35. Timing estimation for gait in water from inertial sensor measurements: Analysis of the performance of 17 algorithms. Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S Comput Methods Programs Biomed; 2020 Dec; 197():105703. PubMed ID: 32818913 [TBL] [Abstract][Full Text] [Related]
36. Measuring Gait Velocity and Stride Length with an Ultrawide Bandwidth Local Positioning System and an Inertial Measurement Unit. Singh P; Esposito M; Barrons Z; Clermont CA; Wannop J; Stefanyshyn D Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33919056 [TBL] [Abstract][Full Text] [Related]
37. Using In-Shoe Inertial Measurement Unit Sensors to Understand Daily-Life Gait Characteristics in Patients With Distal Radius Fractures During 6 Months of Recovery: Cross-Sectional Study. Yamamoto A; Yamada E; Ibara T; Nihey F; Inai T; Tsukamoto K; Waki T; Yoshii T; Kobayashi Y; Nakahara K; Fujita K JMIR Mhealth Uhealth; 2024 Mar; 12():e55178. PubMed ID: 38506913 [TBL] [Abstract][Full Text] [Related]
38. Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson's Disease patients. Romijnders R; Warmerdam E; Hansen C; Welzel J; Schmidt G; Maetzler W J Neuroeng Rehabil; 2021 Feb; 18(1):28. PubMed ID: 33549105 [TBL] [Abstract][Full Text] [Related]
39. Measuring markers of aging and knee osteoarthritis gait using inertial measurement units. Hafer JF; Provenzano SG; Kern KL; Agresta CE; Grant JA; Zernicke RF J Biomech; 2020 Jan; 99():109567. PubMed ID: 31916999 [TBL] [Abstract][Full Text] [Related]